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1 Some theory of C∗-algebras

In this section, we give the definition of Banach algebras, C∗-algebras and related no-
tions. Then we review the spectral theory of Banach and C∗-algebras. Finally, we prove
the Gelfand-Naimark theorem and the existence of a continuous functional calculus for
normal elements.

1.1 Basic definitions

Definition 1.1 (Banach and C∗ algebras). All algebras are over the field C.

(a) A Banach algebra is an algebra A together with a norm that turns it into a Banach
space and is submultiplicative, that is

ab ≤ ab ∀a, b ∈ A.

(b) A ∗-algebra is an algebra A together with an anti-linear involution A → A, a → a∗,
the ∗-operation, such that

(ab)∗ = b∗a∗ ∀a, b ∈ A.

(c) A C∗-algebra is a Banach algebra with a ∗-operation satisfying the C∗-property

a∗a = a2 ∀a ∈ A. (1)

(d) A Banach algebra A is unital if A has a unit 1 ∕= 0 such that 1 = 1. (For C∗-
algebras, this follows from (1).)

The following facts will be used throughout without mentioning.

Lemma 1.2. In any (unital) C∗-algebra, we have

a = a∗ and 1∗ = 1. (2)

Proof. To see the first identity, calculate a2 = a∗a ≤ a∗a, hence a ≤ a∗;
replacing a by a∗ yields a∗ ≤ a. To see the second identity, observe that 1∗a =
(a∗1)∗ = (a∗)∗ = 1 for all a ∈ A; therefore 1 = 1∗1 = 1∗.
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Example 1.3 (Continuous functions). Let X be a locally compact Hausdorff space. The
space

C0(X) = {f : X → C continuous | ∀ε > 0∃K ⊂ X compact : f|X\K∞ < ε}

is a commutative Banach algebra with pointwise multiplication and the supremum
norm f∞ = sup

x∈X |f(x)|. It is even a C∗-algebra with f∗(x) = f(x) (pointwise complex
conjugation). C0(X) is unital if and only if X is compact. In that case, C0(X) = C(X), the
algebra of continuous functions on X.

Example 1.4 (Algebras of operators). Let H be a complex Hilbert space.

(1) B(H), the algebra of bounded operators on H, is a unital Banach algebra with re-
spect to the operator norm. It is commutative precisely when dim(H) ≤ 1. It is
even a ∗-algebra with respect to taking the adjoint map.

(2) K(H), the algebra of compact operators on H, is a closed subalgebra of B(H). Since
taking adjoints preserves K(H), it is a C∗-algebra. It is unital precisely when H is
finite-dimensional and commutative precisely when dim(H) ≤ 1.

Example 1.5 (Direct sums). If A, B are Banach algebras (C∗-algebras), their direct sum
A⊕ B is a Banach algebra (C∗-algebra) with the norm (a, b) := sup{a, b}.

Example 1.6 (Quotients). If A is a Banach algebra an J ⊂ A is a closed ideal, then A/J

is a Banach algebra with the norm [a] = inf{a + b | b ∈ J}. If A is a C∗-algebra,
things are slightly involved. First of all, it is a fact that any closed ideal J of A is
automatically ∗-closed, i.e. a∗ ∈ J for all a ∈ J [3, Thm. 3.1.3]. Therefore, the ∗-operation
[a]∗ := [a∗] is well-defined on A/J. Hence A/J is a ∗-algebra, but showing the C∗-
identity [a]2 = [a]∗[a] is rather tricky; one way to see this is via approximate units
(see e.g. [3, Thm. 3.1.4] or [2, Prop. 1.8.2]). For another approach, see [4, Exercise 1.B].
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Example 1.7 (Matrix algebras). If A is an algebra and n ∈ N, the algebra Mn(A) the
algebra of n× n matrices with entries in A is an algebra with matrix multiplication. If
A is ∗-algebra, there is a ∗-operation on Mn(A) given by




a11 · · · a1n

... . . . ...
an1 · · · ann





∗

=




a∗
11 · · · a∗

n1
... . . . ...

a∗
1n · · · a∗

nm



 ,

turning also Mn(A) into a ∗-algebra. If A is moreover a C∗-algebra, Lemma 1.38 shows
that there is a suitable norm on Mn(A) turning it into a C∗-algebra.

Definition 1.8 (Homomorphisms). Let A, B be algebras.

(a) A homomorphism Φ : A → B is a linear map which is multiplicative, that is Φ(ab) =
Φ(a)Φ(b) for a, b ∈ A.

(b) If A and B are unital, then we say that Φ is unital if Φ(1A) = 1B.

(c) If A and B are ∗-algebras, a ∗-homomorphism is a homomorphism Φ : A → B such
that Φ(a∗) = Φ(a)∗ for all a ∈ A.

Remark 1.9. If A, B are Banach algebras, we do not require continuity of homomor-
phisms Φ : A → B. Instead, continuity is often automatic (see e.g. Prop. 1.16 and
Lemma 1.22).

Example 1.10. If B is another C∗-algebra and Φ : A → B a ∗-homomorphism, we get
an induced ∗-homomorphism Mn(Φ) : Mn(A) → Mn(B), which is given by




a11 · · · a1n

... . . . ...
an1 · · · ann



 −→




Φ(a11) · · · Φ(a1n)

... . . . ...
Φ(an1) · · · Φ(ann)



 . (3)

Clearly, associating matrix algebras assembles to a functor that sends the category of
C∗-algebras and ∗-homomorphisms to itself. For convenience, we will usually just
write again Φ instead of Mn(Φ).
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1.2 Spectral theory

Definition 1.11. Let A be a unital Banach algebra and let a ∈ A.

(a) ρ(a) = {λ ∈ C | λ− a invertible} is called resolvent set of a.

(b) σ(a) = C \ ρ(a) is called spectrum of a.

If A is moreover a C∗-algebra, then

(c) a is called normal if a∗a = aa∗.

(d) a is called self-adjoint if a = a∗.

Example 1.12. If X is a compact Hausdorff space, then for f ∈ C(X), we have σ(f) =
{f(x) | x ∈ X}. This follows directly from the fact that f ∈ C(X) is invertible precisely if
f(x) ∕= 0 for all x ∈ X.

Example 1.13. Let H be a Hilbert space and T ∈ B(H). The essential spectrum σess(T)
of T consists of those λ ∈ C such that λ − T is not a Fredholm operator. Remember
here that T is called Fredholm if it has closed range and finite-dimensional kernel and
cokernel; equivalently (by Atkinsons’s theorem), it is one that admits a parametrix, that
is an operator S such that TS − idH, ST − idH ∈ K(H). Clearly, the latter condition is
equivalent to saying that the class [T ] is invertible in B(H)/K(H). We conclude that
σess(T) = σ([T ]), the spectrum of [T ] in B(H)/K(H)

Proposition 1.14. Let A be a unital Banach algebra and let a ∈ A.

(a) ρ(a) is open.

(b) σ(a) is compact, more precisely, |λ| ≤ a for all λ ∈ σ(a).

(c) σ(a) ∕= ∅.

If A is moreover a C∗-algebra, then

(d) if a is normal, then a2 = a2 and a = sup{|λ| | λ ∈ σ(a)};
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(e) if a is self-adjoint, then σ(a) ⊆ R.

(f) σ(a∗a) ⊂ R≥0;

Proof. Except for (f), these results are proven just as the special case A = B(H). As-
sertion (f) is non-trivial; a proof can be found in [3, §2.2].

Proposition 1.15. Any ∗-algebra has at most one submultiplicative norm satisfying the
C∗-property with respect to which it is complete.

Proof. This follows from the fact that the norm is determined by the algebra structure:
For all a ∈ A,

a2 = a∗a = sup{|λ| | λ ∈ σ(a∗a)},

where the first equality is the C∗-property and the second equality follows from
Prop. 1.14(d), as a∗a is normal.

Proposition 1.16. Let A and B be a unital C∗-algebras. Then any unital ∗-
homomorphism Φ : A → B is contractive, i.e. Φ(a) ≤ a for all a ∈ A.

Proof. Let a ∈ A and λ ∈ ρ(a). Then λ− a is invertible, say (λ− a)b = 1A. Since Φ is
unital,

1B = Φ(1A) = Φ((λ− a)b) = (λ−Φ(a))Φ(b).

we conclude that λ−Φ(a) is invertible, with inverse Φ(b), hence λ ∈ ρ(Φ(a)). Hence
ρ(a) ⊆ ρ(Φ(a)) and σ(Φ(a)) ⊆ σ(a). Now by the C∗-property and Prop. 1.14(d),

Φ(a)2 = Φ(a)∗Φ(a) = sup{|λ| | λ ∈ σ(Φ(a)∗Φ(a)))}

≤ sup{|λ| | λ ∈ σ(a∗a))} = a∗a = a2.

This finishes the proof.

Theorem 1.17 (Gelfand-Mazur). Let A be a unital Banach algebra where every element
0 ∕= a ∈ A is invertible. Then A is one-dimensional.

Proof. Let a ∈ A. Since σ(a) ∕= ∅ (Prop. 1.14(c)), we can choose λ ∈ C such that λ− a

is not invertible. Hence by assumption on A, a − λ = 0, i.e. a is a multiple of the
identity.

7



1.3 The unitalization

Definition 1.18. Let A be a C∗-algebra. Its unitalization A+ is the unital ∗-algebra with
underlying vector space A+ = A⊕ C, product

(a, λ) · (b, µ) := (ab+ λb+ µa, λµ).

and ∗-operation
(a, λ)∗ := (a∗, λ).

That the product and ∗-operation given above indeed turn A+ into a ∗-algebra is a
straightforward calculation. The identification a → (a, 0) embeds A into A+, and we
just write A ⊂ A+. One easily checks that A is an ideal in A+. In fact, it is the kernel of
the augmentation map, which is the ∗-homomorphism

εA : A+ −→ C, εA(a, λ) = λ.

Proposition 1.19. For any C∗-algebra A, the ∗-algebra A+ is a C∗-algebra, that is, there
exists a unique norm of A+ that turns A+ into a C∗-algebra.

Proof. We have to prove the existence; uniqueness then follows from Prop. 1.15. If
A is unital, we have A+ ∼= A ⊕ C as ∗-algebras (via the isomorphism (a, λ) → (a +
λ1A, λ)) and A⊕ C is a C∗-algebra.
Assume now that A is non-unital. In this case, we define a norm by

(a, λ) := sup
b≤1

ab+ λb, (4)

where the supremum is taken over all b ∈ A with b ≤ 1 and the norm on the
right hand side is the norm of A. The norm is definite because ab + λb = 0 for all
b ∈ A would mean that either λ = 0 and hence a = 0 or −λ−1a is a unit for A. It is
submultiplicative because

(a, λ) · (b, µ) = sup
c≤1

abc+ λbc+ µac+ λµc

= sup
bc+µc∕=0

a(bc+ µc) + λ(bc+ µc)
bc+ µc bc+ µc

≤ sup d ≤ 1ad+ λd · sup
c≤1

ac+ λc = (a, λ)(b, µ).

We verify that the norm verifies the C∗-identity. To this end, we first observe that in
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any C∗-algebra, we have the identity

a = sup
b≤1

ab = sup
b≤1

ba, (5)

since on the one hand, if b ≤ 1, then ab ≤ ab ≤ a by submultiplicativity,
and on the other hand, the C∗-identity implies a = ab for b = a−1a∗. Now

(a, λ)∗(a, λ) = (a∗a+ λa+ λa∗, |λ|2)
= sup

b≤1

(a∗a+ λa+ λa∗)b+ |λ|2b

= sup
c≤1

sup
b≤1

c(a∗a+ λa+ λa∗)b+ c|λ|2b

≥ sup
b≤1

b∗(a∗a+ λa+ λa∗)b+ b∗|λ|2b

= sup
b≤1

(ab+ λb)∗(ab+ λb)

= sup
b≤1

ab+ λb2

= (a, λ)2,

where we used the C∗-identity of the norm of A. The inequality (a, λ)∗(a, λ) ≤
(a, λ)2 follows from submultiplicativity.
Completeness follows from the following lemma from functional analysis: If V is a
normed vector space and W ⊂ V is a subspace of codimension one which is complete with
respect to the induced norm, then V is also complete. Indeed, W := A has codimension
one in V := A+, and the norm that (4) induces on W its original norm by (5). Hence
by the lemma, V = A+ is complete.

Remark 1.20. The obvious norm (a, λ)1 := a + |λ| turns A+ into a Banach algebra,
but it does not satisfy the C∗-property. However, by (4), we have (a, λ) ≤ (a, λ)1.
Hence the identity map from A+ with the norm  · 1 to A+ with the norm (4) is
bounded. It then follows from the open mapping theorem that also its inverse is
bounded, hence both norms are equivalent.

If A, B are C∗-algebras and Φ : A → B is a ∗-homomorphism, we obtain a unital
∗-homomorphism

Φ+ : A+ −→ B+, Φ+(a, λ) = (Φ(a), λ).

It is straightforward to check that A → A+, Φ → Φ+ defines a functor (the unitalization
functor) from the category of C∗-algebras and ∗-homomorphisms to the category of
unital C∗-algebras and unital ∗-homomorphisms. In fact, since εB ◦Φ = εA, the target
category of the unitalization functor is the category of augmented unital C∗-algebras
together with compatible unital ∗-homomorphisms. This observation motivates the
definition of the K0-functor below.

9



Remark 1.21. The unitalization of a C∗-algebra A has the following universal property.
For any unital C∗-algebra B and any ∗-homomorphism Φ : A → B (not necessarily
unital if A is unital), there exists a unique unital ∗-homomorphism Φ+ : A+ → B that
restricts to Φ on A ⊂ A+. Hence the unitalization is a left adjoint to the forgetful functor
from the category of unital C∗-algebra and unital ∗-homomorphisms to the category of
C∗-algebras and ∗-homomorphisms.

1.4 The Gelfand-Naimark theorem

Lemma 1.22. Let A be a Banach algebra. Then every homomorphism ϕ : A → C is
continuous with ϕ ≤ 1. If A is unital, we have more precisely either ϕ = 1 or
ϕ = 0.

Proof. Suppose that 1 < ϕ ≤ ∞. Then there exists a ∈ A with |ϕ(a)| > a. Set
a′ := ϕ(a)−1a; then ϕ(a′) = 1, but a′ = |ϕ(a)|−1a < 1. Set b =

∞
n=1(a

′)n, where
the series converges absolutely as a′ < 1. Then b = a′ + a′b and therefore

ϕ(b) = ϕ(a′) +ϕ(a′)ϕ(b) = 1+ϕ(b),

a contradiction. Hence ϕ ≤ 1.
If now ϕ ∕= 0, then there exists a ∈ A with ϕ(a) ∕= 0. Again setting a′ = ϕ(a)−1a, we
have ϕ(a′) = 1. Therefore, if A has a unit,

1 = 1 = ϕ(a′) = ϕ(a′1) = ϕ(a′)  
=1

ϕ(1) = ϕ(1),

hence ϕ ≥ 1.

Definition 1.23. For a Banach algebra A, the Gelfand space is the set

ΓA := {ϕ : A → C homomorphism,ϕ ∕= 0}.

By Lemma 1.22, each ϕ ∈ ΓA is in fact continuous, i.e. an element of the dual space A′

of the Banach space A. Remember that A′ carries the weak-∗-topology, which can be
characterized as the coarsest topology such that for each a ∈ A, the linear functional
a : A′ → C, a(ϕ) = ϕ(a) is continuous.

Lemma 1.24. Let A be a unital Banach algebra and J ⊂ A a maximal ideal. Then J is
closed.
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Proof. Let J be a maximal ideal (in particular proper!). Then, by continuity of the
multiplication, its closure J is again an ideal. Since J ⊂ J and J is maximal, we have
either J = J or J = A. The latter means that J is dense in A; we show that this is not
possible. Namely, any a ∈ A with 1 − a < 1 is invertible, with inverse given by
the Neumann series a−1 =

∞
n=0(1 − a)n. On the other hand, if J is dense, it must

have a non-trivial intersection with the open set {a | 1 − a < 1}, hence contain
an invertible element. But this would imply J = A, which is impossible since J is a
proper ideal.

Proposition 1.25. Let A be a unital commutative Banach algebra.

(a) ΓA equipped with the weak-∗-topology is a compact Hausdorff space, and for each
a ∈ A, we have a ∈ C(ΓA).

(b) Every maximal ideal J ⊂ A is of the form J = ker(ϕ) for ϕ ∈ ΓA.

(c) We have ΓA ∕= ∅. More precisely, σ(a) = {ϕ(a) | ϕ ∈ ΓA} for all a ∈ A.

(d) For all a ∈ A, σ(a) = σ(a).

Proof. (a) We have

ΓA =


a,b∈A

{ϕ ∈ A′ | ϕ(ab)−ϕ(a)−ϕ(b) = 0} ∩ {ϕ ∈ A′ | ϕ(1) = 1}.

Since the maps A′ → C, ϕ → ϕ(a) are weak-∗-continuous for each a ∈ A (by the
above characterization of the topology), we see that ΓA is closed. On the other hand
Lemma 1.22, we have ϕ = 1 for each ϕ ∈ ΓA, hence ΓA is a subset of the unit ball
of A′, which is compact with respect to the weak-∗-topology, by the Banach-Alaoglu
theorem. We conclude that ΓA is a closed subset of a compact set, hence compact. The
a are continuous, again by the characterization of the weak-∗-topology.
(b) It is a general fact that for a commutative ring A, the quotient A/J by an ideal J
is a field if and only if J is maximal. Suppose that J is a maximal ideal, so that A/J

is a field. Now, any maximal ideal in a Banach algebra is closed by Lemma 1.24,
and the quotient of a Banach algebra by a closed ideal is again a Banach algebra
(see Example 1.6). From Thm. 1.17, we therefore get A/J ∼= C. The quotient map
ϕ : A → A/J ∼= C is a homomorphism with ker(ϕ) = J. Conversely, since for ϕ ∈ ΓA,
the quotient A/ker(ϕ) ∼= C is a field, ker(ϕ) must be a maximal ideal.
(c) First ΓA ∕= ∅ by (b), as any ideal is contained in a maximal ideal (Zorn’s lemma!).
Suppose that λ /∈ σ(a), so that λ− a is invertible. Then for every ϕ ∈ ΓA, ϕ(λ− a) =
λ − ϕ(a) ∈ C is non-zero by multiplicativity of ϕ. Hence λ /∈ {ϕ(a) | ϕ ∈ ΓA}.
This shows that {ϕ(a) | a ∈ A} ⊆ σ(a). Conversely, suppose that λ ∈ σ(a). Then
J = {(λ − a)b | b ∈ A} is an ideal. It is proper since 1 ∈ J would imply 1 = (λ − a)b
for some b ∈ A, hence b = (λ − a)−1, a contradiction. Therefore, J is contained
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in a maximal ideal, which by (b) is of the form ker(ϕ) with ϕ ∈ ΓA. We obtain
ϕ((λ − a)b) = 0 for each b ∈ A; in particular for b = 1, we get ϕ(a) = λ, hence
σ(a) ⊆ {ϕ(a) | ϕ ∈ ΓA}.
(d) Since a ∈ C(ΓA), Example 1.12 gives

σ(a) = {a(ϕ) | ϕ ∈ ΓA} = {ϕ(a) | ϕ ∈ ΓA}.

But this equals σ(a) by (c).

Theorem 1.26 (Gelfand representation). Let A be a commutative unital Banach alge-
bra. Then A → C(ΓA), a → a, called Gelfand transform, is a unital homomorphism
with

a∞ = sup{|λ| | λ ∈ σ(a)} ≤ a.

Proof. We have

(ab)(ϕ) = a(ϕ)b(ϕ) = ϕ(a)ϕ(b) = ϕ(ab) = ab(ϕ), e(ϕ) = ϕ(e) = 1.

Hence the Gelfand transform is a unital algebra homomorphism. Moreover,

a∞ = sup{|a(ϕ)| | ϕ ∈ ΓA} = sup{|ϕ(a)| | ϕ ∈ ΓA} = sup{|λ| | λ ∈ σ(a)},

where in the last step, we used Prop. 1.25(c). By Prop. 1.14(b), this is estimated by
a.

Theorem 1.27 (Gelfand-Naimark). Let A be a commutative unital C∗-algebra. Then
the Gelfand transform A → C(ΓA), a → a is an isometric ∗-isomorphism.

Proof. We show that the Gelfand transform is a ∗-homomorphism, i.e. a∗ = a. First
let a be self-adjoint, for which we have to show that a is real. Because a is self-adjoint,
we have σ(a) ⊂ R (Prop. 1.14(e)). But by Prop. 1.25(d) and Example 1.12, we have

R ⊃ σ(a) = σ(a) = {a(ϕ) | ϕ ∈ ΓA}.

Hence a is real-valued. The general case follows from writing

a = b+ ic =
1

2
(a+ a∗) + i

1

2i
(a− a∗).

Then b and c are self-adjoint and by the previous step,

a∗ = b∗ − ic∗ = b− ic = b+ ic = a.
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We show that the Gelfand transform is isometric. Since A is commutative, any a ∈ A

is normal, hence

a = sup{|λ| | λ ∈ σ(a)} (Prop. 1.14(d))
= sup{|λ| | λ ∈ σ(a)} (Prop. 1.25(d))
= sup{a(ϕ) | ϕ ∈ ΓA} (Example 1.12)
= a∞.

We use the theorem of Stone-Weierstraß to show that A ⊆ C(ΓA) is dense. To this
end, we have to show that

(i) A seperates points, i.e. if for ϕ,ψ ∈ ΓA, we have a(ϕ) = a(ψ) for all a ∈ A, then
ϕ = ψ. But this is clear since ϕ = ψ ∈ A′ if ϕ(a) = ψ(a) for all a ∈ A.

(ii) No evaluation functional vanishes, i.e. for all ϕ ∈ ΓA, there exists a ∈ A with
a(ϕ) ∕= 0. Again, this is clear, because if for some ϕ ∈ Γ , one has a(ϕ) = ϕ(a) =
0 for all a ∈ A, then ϕ = 0, hence ϕ /∈ ΓA.

(iii) A is closed under complex conjugation. But this follows since for a ∈ A, a =
a∗ ∈ A.

We conclude that A is dense in C(ΓA). But since a → a is isometric, A is also closed,
hence A = C(ΓA).

Remark 1.28. It follows from the proof that if A is a C∗-algebra any algebra homomor-
phism ϕ : A → C is automatically ∗-preserving. Namely, for any a ∈ A,

ϕ(a∗) = a∗(ϕ) = a(ϕ) = ϕ(a).

Theorem 1.29 (Spectral permanence). Let A be a unital C∗-algebra and let B be a closed
subalgebra containing the unit. Then for any a ∈ B, we have σA(a) = σB(a).

Proof. Clearly, σA(a) ⊆ σB(a). Indeed, if λ−a is not invertible in A, then it cannot be
invertible in B. To show the converse, it suffices to show that if a ∈ B is invertible in
A, then a−1 ∈ B (i.e. a is even invertible in B).
Suppose first that a is self-adjoint and let B0 ⊆ A be the unital C∗-algebra generated
by a and a−1 and let B′

0 ⊆ B be the unital C∗-algebra generated by a. We want
to show that B0 ⊆ B, and we will do this by establishing that B0 = B′

0. To this
end, notice that both B0 and B′

0 are commutative since a is self-adjoint. Hence by
Thm. 1.27, B0

∼= C(ΓB0
) is generated by the functions a and a−1 and the subalgebra

B′
0 ⊆ C(ΓB0

) is generated by the function a. First observe that for all ϕ ∈ ΓB0
, we

have 1 = ϕ(1) = ϕ(a)ϕ(a−1), hence ϕ(a−1) = 1/ϕ(a). We apply the theorem of
Stone-Weierstraß. To this end, we have to show
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(i) B′
0 separates points: For ϕ,ψ ∈ ΓB0

, suppose that f(ϕ) = f(ψ) for all f ∈ B′
0.

Then in particular for f = a, i.e. ϕ(a) = ψ(a). But then also ϕ(a−1) = 1/ϕ(a) =
1/ψ(a) = ψ(a−1), hence ϕ and ψ agree on all Laurent polynomials in a. Since
those are dense in B0, we must have ϕ = ψ.

(ii) No evaluation functional vanishes: Suppose that there exists ϕ ∈ ΓB0
such that

f(ϕ) = 0 for all f ∈ B′
0. Then in particular ϕ(a) = 0, a contradiction to 1 =

ϕ(a)ϕ(a−1).

(iii) B′
0 is closed with respect to complex conjugation: This is clear, since B′

0 is a
∗-algebra and the Gelfand transform is ∗-preserving.

We conclude that B′
0 is dense in C(ΓB0

). But it is also closed, hence B′
0 = C(ΓB0

) and
B′
0 = B0, which was to show.

Finally, let a ∈ B be invertible but not necessarily self-adjoint. Then (a−1)∗ is an
inverse for a∗, hence the self-adjoint element a∗a ∈ B is invertible in A with inverse
(a∗a)−1 = a−1(a∗)−1. By the previous step, (a∗a)−1 ∈ B, hence also a−1 = (a∗a)−1a∗ ∈
B.

Theorem 1.30 (Continuous functional calculus). Let A be a unital C∗-algebra and let
a ∈ A be normal. Then there exists an isometric ∗-homomorphism C(σ(a)) → A,
f → f(a), such that the identity function on σ(a) is mapped to a.

Proof. Let A0 ⊂ A be the C∗-algebra generated by a, in other words the closure of
the subalgebra of all polynomials in a and a∗. Since a is normal, A0 is commutative,
hence Gelfand transform gives an isomorphism A0

∼= C(ΓA0
).

We claim that a : ΓA0
→ {a(ϕ) | ϕ ∈ ΓA0

} is a homeomorphism (here we used Ex-
ample 1.12 and Prop. 1.25(d)). Clearly a is surjective. We claim that a is injective.
Suppose that a(ϕ) = a(ψ), i.e. ϕ(a) = ψ(a). Then also

ϕ(a∗) = a(ϕ∗) = a(ϕ) = a(ψ) = a(ψ∗).

Since ϕ and ψ are multiplicative, ϕ and ψ agree on finite sums of an(a∗)m. Since ϕ is
continuous, ϕ = ψ everywhere so that a is injective. Now a is a bijective continuous
map between two Hausdorff spaces. We have to show that the inverse f = a−1 is
continuous. To this end, let K ⊂ ΓA0

be closed. Then the preimage of K under f

is f−1(K) = a(K). Because ΓA0
is compact, so is K. Since a is continuous, a(K) is

compact, hence closed. This shows that the preimages of closed sets under f are
closed, so f is continuous.
Finally, proof is finished by the calculation

{a(ϕ) | ϕ ∈ ΓA0
} = σ(a) (Example 1.12)
= σA0

(a) (Prop. 1.25(d))
= σA(a). (Thm. 1.29).
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Using the continuous functional calculus, one can show the following result on polar
decomposition in a unital C∗-algebra A.

Corollary 1.31 (Polar decomposition). Let A be a unital C∗-algebra and let a ∈ A be
invertible. Then there exists a unitary u ∈ A such that a = u|a|.

Here a∗a is self-adjoint and has non-negative spectrum by Prop. 1.14(f), hence its
square-root |a| = (a∗a)1/2 can be defined using Thm. 1.30.

Proof. Clearly, u is given by u = a|a|−1. We have to show that it is unitary. To this
end, we calculate

u∗u = (a∗a)−1/2a∗a(a∗a)−1/2 = (a∗a)−1/2(a∗a)−1/2a∗a = 1,

using that the map C(σ(a∗a)) → A is an algebra homomorphism. Showing that
uu∗ = 1 is more involved.
We first claim that σ(a∗a) = σ(aa∗). To this end, let λ ∈ ρ(a∗a), in other words
λ − a∗a is invertible. Since a is invertible, this is equivalent to the invertibility of
(λ − a∗a)a∗ = a∗(λ − aa∗), which is then equivalent to λ − aa∗ being invertible.
Hence ρ(a∗a) = ρ(aa∗), which implies the result on the spectra.
We now claim that f(a∗a)a∗ = a∗f(aa∗) for all f ∈ C(σ(a∗a)) = C(σ(aa∗)). Because
of the calculation

(a∗a)ka∗ = (a∗a)(a∗a) · · · (a∗a)a∗ = a∗(aa∗)(a · · ·a∗)(aa∗) = a∗(aa∗)k,

this is true for any polynomial f. Since polynomials are dense in C(σ(a∗a)) by the
Weistraß approximation theorem, the claim follows.
Finally, we have

uu∗ = a(a∗a)−1/2(a∗a)−1/2a∗ = a(a∗a)−1a∗ = aa∗(aa∗)−1 = 1,

where in the second step, we used the identity f(a∗a)a∗ = a∗f(aa∗) with f(x) =
x−1/2.

Corollary 1.32. Let A, B be unital C∗-algebras and let Φ : A → B be an injective unital
∗-homomorphism. Then Φ is isometric.

Proof. Assume the converse. Since by Prop. 1.16, Φ is contractive, there this would
mean that there exists a ∈ A with a = 1, but Φ(a) =: λ0 < 1. By the C∗-
identity, also a∗a = 1 and Since Φ is a ∗-homomorphism, also Φ(a∗a) = λ2

0 < 1.
Therefore, we can choose a continuous function f ∈ C(σ(a∗a)) such that f(λ) = 0

on [0, λ2
0] and f(1) = 1. As seen in the proof of Prop. 1.16, σ(Φ(a∗a)) ⊂ σ(a∗a). We

claim that Φ(f(a∗a)) = f(Φ(a∗a)). Indeed, this holds for f a polynomial since Φ is a
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homomorphism; the general case follows since polynomials are dense in C(σ(a∗a)).
Now a∗a = 1 means that 1 ∈ σ(a∗a) (Prop. 1.14(d)), hence

f(a∗a) = sup{|f(λ) | λ ∈ σ(a∗a)} = 1.

But since Φ(a∗a) = λ2
0, we have σ(Φ(a∗a)) ⊂ [0, λ2

0], hence Φ(f(a∗a)) =
f(Φ(a∗a)) = 0. This contradicts the injectivity of Φ.

Definition 1.33 (Representation). Let A be a C∗-algebra.

(a) If H is a Hilbert space, a ∗-homomorphism ρ : A → B(H) is called a ∗-representation.

(b) A ∗-representation is called faithful if it is injective.

(c) A ∗-representation on a Hilbert space H is called irreducible if whenever V ⊆ H is a
closed subspace such that ρ(a)v = 0 for all a ∈ A, v ∈ H, then V = {0}.

Theorem 1.34 (Gelfand-Naimark, non-commutative version). Let A be a C∗-algebra.
Then there exists a Hilbert space H together with a faithful and isometric ∗-
representation ρ : A → B(H).

Proof sketch. After possibly replacing A by A+, we may assume that A is unital. The
Gelfand space ΓA is “too small” to characterize A when it is not commutative; indeed,
since for ϕ ∈ ΓA,

ϕ(ab− ba) = ϕ(a)ϕ(b)−ϕ(b)ϕ(a) = 0,

the Gelfand space ΓA only depends on the commutator subspace A/[A,A].
In the non-commutative case, we therefore instead consider the space

SA := {ϕ : A → C continuous | ∀a ∈ A : ϕ(a∗a) ≥ 0, ϕ = 1.} ⊂ A′,

where we give up on the requirement that ϕ is multiplicative. For any such ϕ, the
obtain a (semi-) positive Hermitean form 〈a, b〉 := ϕ(a∗b) on A. The corresponding
completion Hϕ is a Hilbert space that comes with a ∗-representation ρϕ : A → B(H)
defined by ρϕ(a)[b] := [ab]. One then defines

H =


ϕ∈SA

Hϕ, ρ =


ϕ∈SA

ρϕ (6)

and shows that the corresponding ρ is faithful. It is isometric by Corollary 1.32.

Remark 1.35. As obvious from formula (6), the representation of A constructed in the
proof above is typically not separable (namely as soon as SA is an uncountable set).
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Some algebras in fact to not have a separable representation, e.g. the Calkin algebra
Q(H) := B(H)/K(H), for H a separable Hilbert space [5, Satz IX.3.16].

1.5 The spatial tensor product

In this section, we define the spatial tensor product of C∗-algebras, in particular in or-
der to put C∗-norms on matrix algebras Mn(A) over C∗-algebras A. General references
for the theory of tensor products on C∗-algebras are [4, §T.5] and [1, §3].
For ∗-algebras A, B, the algebraic tensor product A ⊗alg B is an algebra, with product
determined and well-defined (!) by a1 ⊗ b1 · a2 ⊗ b2 = a1a2 ⊗ b1b2 for a1, a2 ∈ A,
b1, b2 ∈ B. It is moreover a ∗-algebra with the ∗-operation (a⊗ b)∗ = a∗ ⊗ b∗.

Definition 1.36 (Spatial tensor product). Let A and B be C∗-algebras.

(a) The spatial norm on A⊗alg B is defined by

xσ := sup (ρA ⊗alg ρB)(x) = sup


n

i=1

ρA(ai)⊗ ρB(bi)
 (7)

for x =
m

n=1 an ⊗ bn ∈ A ⊗alg B, where the supremum is taken over all ∗-
representations ρA, ρB of A and B on Hilbert spaces H, K.

(b) The spatial tensor product of A and B, denoted by A⊗B, is the completion of A⊗algB

with respect to the spatial norm.

Some comments on the definition of the spatial norm are in order. First, any pair of
∗-representations ρA, ρB on Hilbert spaces H, K defines a ∗-representation

ρA ⊗alg ρB : A⊗alg B −→ B(H)⊗alg B(K) ⊆ B(H⊗ K).

Here an operator X⊗ Y ∈ B(H)⊗alg B(K) is viewed as operator in B(H⊗ K); explicitly,
it is given by (X⊗ Y)(


i vi ⊗wi) =


i X(vi)⊗ Y(wi). The norm is finite, since


n

i=1

ρA(ai)⊗ ρB(bi)
 ≤

n

i=1

ρA(ai)ρB(bi) ≤
n

i=1

aibi; (8)

here we used that ∗-homomorphisms are contractive, by (1.16). It is non-degenerate,
as any C∗-algebra has a faithful representation on a Hilbert space (by the Gelfand-
Naimark theorem 1.34) and the induced representation ρA ⊗alg ρB is injective if ρA and
ρB are (see e.g. [4, T.5.1]). Moreover, it is clear from the definition that  · σ satisfies the
C∗-identity, hence A⊗ B is a C∗-algebra.
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Remark 1.37. Any pair of representations ρA, ρB of A and B induces a C∗-seminorm
on A ⊗alg B by pulling back the operator norm along ρA ⊗alg ρB. Now if ρ′

A, ρ′
B is any

other pair of representations, then the direct sum representation ρA⊕ρ′
A, ρB⊕ρ′

B clearly
induces a larger seminorm this way. This shows that in the supremum in (8), it suffices
to only consider faithful representations, because ρA ⊕ ρ′

A is faithful as soon as one of
ρA, ρ′

A is faithful. It is also easy to see that we may restrict attention to irreducible
representations.

Lemma 1.38. For any C∗-algebra A, we have A⊗Mn(C) ∼= Mn(A).

Proof. Clearly, Mn(A) ∼= A ⊗alg Mn(C), so the point is to show that A ⊗alg Mn(C) is
already complete with respect to the spatial norm.
Let ρ be a faithful ∗-representation of A. The representation ρn : Mn(A) → B(Hn)
induced by ρ as in (3) takes the form

ρn








a11 · · · a1n

... . . . ...
an1 · · · ann












v1
...
vn



 =




Φ(a11)v1 + · · ·+Φ(a1n)vn

...
Φ(an1)v1 + · · ·+Φ(ann)vn



 . (9)

We check that ρn(Mn(A)) is complete in B(Hn). To this end, we observe that for any
X = (Xij)1≤i,j≤n ∈ B(Hn), one has for each i, j = 1, . . . , n






X11 · · · X1n

... . . . ...
Xn1 · · · Xnn







2

=

n

i=1

sup
v=1

Xi1v1 + · · ·+ Xinvn
2 ≥ Xij2.

We conclude that, if a sequence a(m) = (a
(m)
ij )1≤i,j≤n ∈ Mn(A), m ∈ N, is is such that

ρn(a
(m)) → X ∈ B(Hn), then also ρ(a

(m)
ij ) → Xij for all 1 ≤ i, j ≤ n. Since the image of

ρ is closed, this implies Xij = ρ(aij) for some aij ∈ A, hence X is in the image of ρn.
Now since the image of ρn is closed, pulling back the norm on B(Hn) to Mn(A) via ρn

gives a complete norm on Mn(A) satisfying the C∗-identity. We have to show that this
norm coincides with the spatial norm. By Remark 1.37, it suffices to consider faith-
ful, irreducible representations in the definition of the spatial norm; for Mn(C), any
such representation is isomorphic to the standard representation idMn(C) : Mn(C) →
B(Cn) = Mn(C). Also, under the isomorphism Mn(A) ∼= A ⊗ Mn(C), we have
ρn = ρ⊗alg idMn(C). Combining these two observations, we conclude that the spatial
norm of a ∈ Mn(A) ∼= A⊗alg Mn(C) is given by

aσ = sup
ρ

ρn(a),

where the supremum is taken over all faithful representations ρ of A. On the other
hand, we have seen above that each of the norms aρ := ρn(a) turns Mn(A) into
a C∗-algebra, hence they must all be equal, by Prop. 1.15. This finishes the proof.
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Theorem 1.39. Let A and B be C∗-algebras. Then the supremum (7) is in fact a maxi-
mum, which is taken at any pair of faithful representations ρA, ρB. In other words, for
any x ∈ A⊗alg B and any pair of faithful representations ρA, ρB of A, B, we have

xσ = (ρA ⊗alg ρB)(x).

In particular, if A ⊆ B(H), B ⊆ B(K) are C∗-subalgebras, then A ⊗ B is isomorphic to
the norm closure of A⊗alg B ⊆ B(H⊗ K).

Proof. We first observe that by Lemma 1.38, the theorem is true if A is isomorphic to
Mn(C). In particular, we have

xσ = (idA ⊗ ρB)(x)

for any faithful representation ρB of B. Namely, for any such representation, the right
hand side gives a complete C∗-norm on Mn(C)⊗ B, which then must be all equal.
In general, let ρA and ρB representations of A and B and let ρ′

B be faithful representa-
tion of B. We will show that for all x ∈ A⊗alg B, we have

(ρA ⊗alg ρB)(x) ≤ (ρA ⊗alg ρ
′
B)(x). (10)

By symmetry of the tensor product construction, the same is true when replacing ρA

by a faithful representation ρA′ , and the proposition follows.
To begin with, let V be the directed system of finite-dimensional subspaces of H (see
Example 2.26). For V ∈ V, let PV be the orthogonal projection onto V in H, and let
P′
V := PV ⊗ idK, the orthogonal projection onto V ⊗ K in H ⊗ K. It is then an easy

lemma from functional analysis that

X = lim
V

(PV ⊗ idB(K))X(PV ⊗ idB(K)),

for all X ∈ B(H⊗ K), where the limit is taken in the sense of nets.
We obtain that for any x ∈ A⊗alg B,

(ρA ⊗alg ρB)(x) = lim
V

(PVρAPV ⊗alg ρB)(x).

For each V ∈ V, the map PVρAPV⊗algρB is the composition of the linear map PVρAPV⊗
idB : A⊗alg B → B(V)⊗alg B and the ∗-homomorphism idB(V) ⊗alg ρB : B(V)⊗alg B →
B(V ⊗ K). Therefore, for any x ∈ A⊗alg B, we have

(ρA ⊗alg ρB)(x) = lim
V

(idB(V) ⊗ ρB)(PVρAPV ⊗ idB)(x).

Now since idB(V) ⊗ ρB is a ∗-homomorphism, hence contractive (Prop. 1.16), we have

(idB(V) ⊗ ρB)(PVρAPV ⊗ idB)(x) ≤ (PVρAPV ⊗ idB)(x)σ, (11)
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where the right hand side denotes the spatial norm of B(V)⊗alg B = B(V)⊗B. More-
over, by (the proof of) Lemma 1.38, we have equality in (11) if ρ′

B is faithful. Com-
bining these observations, we get that for ρB an arbitrary ∗-representation and ρ′

B a
faithful ∗-representation, we have

PVρAPV ⊗alg ρB)(x) ≤ (PVρAPV ⊗alg ρ
′
B)(x)

for all V ∈ V. Taking the limit over V, we obtain (10), which finishes the proof.

If Φ : A → A′ and Ψ : B → B′ are ∗-homomorphisms, we get an induced ∗-homomorphism
Φ⊗alg Ψ : A⊗alg B → A′ ⊗alg B

′. It is continuous because for ∗-representations ρA′ and
ρB′ of A′ and B′, ρA′ ◦Φ and ρB′ ◦Ψ are ∗-representations of A, respectively B. Therefore
Φ ⊗alg Ψ extends by continuity to a ∗-homomorphism Φ ⊗ Ψ : A ⊗ B → A′ ⊗ B′. We
record the following consequence of Thm. 1.39 for later use.

Corollary 1.40. Let A, A′, B and B′ be C∗-algebras and let Φ : A → A′, Ψ : B → B′ be
injective ∗-homomorphisms. Then Φ⊗ Ψ : A⊗ B → A′ ⊗ B′ is injective.

Proof. If ρA′ and ρB′ are faithful representations of A′, respectively B′, then ρA :=
ρA′ ◦Φ and ρB := ρB′ ◦ Ψ are faithful representations of A, respectively B. Hence for
all x ∈ A⊗alg B,

(Φ⊗alg Ψ)(x)σ = (ρA′ ⊗alg ρB′)(Φ⊗alg Ψ)(x) = (ρA ⊗ ρB)(x) = x.

This shows that Φ⊗ Ψ is isometric, in particular injective.

Example 1.41. Let A be a C∗-algebra and let X be a compact Hausdorff space. Then
C0(X)⊗A ∼= C0(X,A), the C∗-algebra of continuous A-valued functions on X vanishing
at infinity.
To see this, observe first there is an obvious injective ∗-homomorphism Φ : C0(X) ⊗alg

A → C0(X,A), given by Φ(f ⊗ a)(t) = f(t)a. To see that its image is dense, one first
observes that Cc(X,A) (compactly supported functions) is dense in C0(X,A), hence it
suffices to approximate a given compactly supported function f. This is done using a
partition of unity subordinate to a suitable finite open cover of the support of f. For
details, see for example [4, §T.2, p. 322].
On the other hand, we claim that Φ is continuous with respect to the spatial norm on
C(X)⊗alg A. To this end, for a Hilbert space H, let ℓ2(X,H) be Hilbert space of functions
α : X → C with countable support x1, x2, · · · ∈ X such that

∞
n=1 |α(xn)|

2 < ∞; we write
ℓ2(X) if H = C. Now we have a faithful ∗-representation µ : C(X) → ℓ2(X), given by
µ(f)α = f · α, and given a faithful representation ρA of A on a Hilbert space H, the
∗-representation θ⊗alg ρA of C(X)⊗alg A on ℓ2(X)⊗H = ℓ2(X,H) takes has an obvious
extension to an injective (hence isometric) ∗-representation ρ of C(X,A) on ℓ2(X,H)
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such that ρ ◦Φ = θ⊗alg ρA. Now for any x ∈ C(X)⊗alg A, we have

Φ(x) = (ρ ◦Φ)(x) = (θ⊗alg ρA)(x) = xσ.

Here in the last step, we used Thm. 1.39. This finishes the proof.

2 The K0-functor

In this section, we define the K0-group K0(A) of a C∗-algebra A. We then state and
prove its main properties.

2.1 Equivalence of projections

Throughout this section, for C∗-algebras A, we denote by A the C∗-algebra given by A

if A is unital and A+ if A is non-unital.

Definition 2.1 (Projections, Isometries, Unitaries). Let A be a C∗-algebra.

(a) p ∈ A is called projection if p∗ = p and p2 = p.

(b) v ∈ A is called partial isometry if v∗v is a projection.

(c) If A is unital, u ∈ A is called unitary if u∗u = uu∗ = 1.

Lemma 2.2. Let A be a C∗-algebra and let v ∈ A be a partial isometry, so that p = v∗v

is a projection. Then also q = vv∗ is a projection. Moreover,

v = vv∗v = vp = qv, v∗ = v∗vv∗ = pv∗ = v∗q. (12)

Proof. By the C∗-identity, we have

v− vv∗v2 = v(1 − v∗v)2 = (1 − v∗v)v∗v(1 − v∗v) = (1 − p)p(1 − p) = 0,

hence v = vv∗v. Taking the transpose shows v∗ = v∗vv∗, so that we have established
(12). q is a projection because it is self-adjoint and q2 = vv∗vv∗ = vv∗ = q, using
(12).
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Definition 2.3 (Equivalence of projections). Let A be a C∗-algebra and let p, q ∈ A be
projections.

(a) p, q are called Murray-von-Neumann equivalent, denoted p ∼ q, if there exists a
partial isometry v ∈ A such that v∗v = p and vv∗ = q.

(b) p, q are called unitarily equivalent, denoted p ∼u q, if there exists a unitary u ∈ A
such that q = upu∗.

(c) p, q are called homotopy equivalent, denoted p ∼h q, if there exists a continuous path
(pt)t∈[0,1] of projections in A, such that p0 = p, p1 = q. Such a path is called homotopy
between p and q.

Lemma 2.4. All the relations in Def. 2.3 are equivalence relations on the set of projec-
tions in A.

Proof. The only non-trivial part is the transitivity of Murray-von-Neumann equiva-
lence. Let p, q, r ∈ A be three projections, and let v,w ∈ A be partial isometries with
v∗v = p, vv∗ = q, w∗w = q, ww∗ = r. Then

(wv)∗(wv) = v∗w∗wv = v∗qv = v∗vv∗v = p2 = p,

(wv)(wv)∗ = wvv∗w = wqw∗ = ww∗ww∗ = r2 = r.

Lemma 2.5. Let A be a C∗-algebra and let p and q be projections in A with p − q <

1/2. Then there exists a unitary u ∈ A with q = upu∗.

Proof. Set a = qp+ (1 − q)(1 − p) ∈ A. It satisfies

qa = qp = ap. (13)

Because

1 − a = q+ p− 2qp = (1 − q)(p− q)− q(p− q) ≤ 2p− q < 1,

the element a is invertible, with a−1 =
∞

n=0(1−a)n (Neumann series), and from (13)
follows q = apa−1.
To obtain a unitary u with q = upu∗, we take the unitary u = a|a|−1 from the polar
decomposition of a, see Corollary 1.31 (remember that |a| = (a∗a)1/2).
We claim that p commutes with |a|−1. First, p commutes with |a|2 because of the
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calculation

|a|2p = a∗ap = a∗qa = (qa)∗a = (ap)∗a = pa∗a = p|a|2,

where we used (13). We conclude that it commutes with all elements of the C∗-
subalgebra B ⊆ A generated by |a|2 and 1. Since |a|2 is invertible, B contains |a|−1,
proving the claim.
Using (13) again, we calculate

upu∗ = a|a|−1pu∗ = ap|a|−1u∗ = qa|a|−1u∗ = quu∗ = q.

Proposition 2.6 (Equivalence of equivalences). Let A be a C∗-algebra and let p, q be
projections in A. Then

(a) p ∼h q =⇒ p ∼u q;

(b) p ∼u q =⇒ p ∼ q;

(c) p ∼ q =⇒

p 0

0 0


∼u


q 0

0 0


in M2(A);

(d) p ∼u q =⇒

p 0

0 0


∼h


q 0

0 0


in M2(A).

Proof. (a) Let (pt)t∈[0,1] be a homotopy between p and q and choose a subdivision
0 = t0 < t1 < · · · < tn = 1 such that pti − pti−1

 < 1/2 for all i = 1, . . . , n. By
Lemma 2.5, there exist unitaries ui in A such that pti = uipti−1

u∗
i for each i, hence

with u = un · · ·u1, we have p1 = up0u
∗.

(b) If q = upu∗ for some unitary u ∈ A, then with v = up, we have v∗v = pu∗up =
p2 = p and vv∗ = up2u∗ = upu∗ = q.
(c) Let v ∈ A be a partial isometry with v∗v = p, vv∗ = q. We need to find an element

u ∈ M2(A) with udiag(p, 0)u∗ = diag(q, 0). To this end, define elements of M2(A)
by

w :=


v 1 − q

1 − p v∗


, s :=


q 1 − q

1 − q q


.

Clearly, s is unitary. Moroever,

w∗w =


v∗v+ (1 − p)2 v∗ − v∗q+ v∗ − pv∗

v− qv+ v− vp (1 − q)2 + vv∗


=


1 0

0 1


,

where we used the identities (12). Similarly, one calculates ww∗ = diag(1, 1), hence
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u is unitary. Also

w


p 0

0 0


w∗ = w


pv∗ 0

0 0


=


vpv∗ 0

0 0


=


vv∗q 0

0 0


=


q 0

0 0


,

again using (12). However, if A is non-unital, we generally have w /∈ M2(A). To
repair this, set u = sw and notice that also udiag(p, 0)u∗ = diag(q, 0) and since
A ⊆ A is an ideal,

u = sw =


qv+ (1 − q)(1 − p) (1 − q)v∗

(1 − q)v+ q(1 − p) 1 − q+ qv∗


∈ M2(A),

(d) Let u ∈ A be a unitary such that q = upu∗. For t ∈ [0, 1], define elements of
M2(A) by

rt :=


cos


πt
2


− sin


πt
2



sin

πt
2


cos


πt
2



, wt :=


u 0

0 1


rt


u∗ 0

0 1


r∗t , pt := wt


p 0

0 0


w∗

t .

Then (wt)t∈[0,1] is a path of unitaries in M2(A) with w0 = diag(1, 1), w1 = diag(u, u∗)
and (pt)t∈[0,1] is a path of projections in M2(A) with p0 = diag(p, 0) and p1 =
diag(q, 0).

2.2 The Grothendieck construction

Remember that a semigroup is a non-empty set S together with a map S×S → S, (g, h) →
g · h, that satisfies (g · h) · k = g · (h · k) for all g, h, k ∈ S (associativity). A semigroup S

is abelian if the multiplication is commutative, g · h = h · g for all g, h ∈ S. A homomor-
phism between semigroups S, T is a map ϕ : S → T such that ϕ(gh) = ϕ(g)ϕ(h) for all
g, h ∈ S. Any group is in particular a semigroup.

Definition 2.7 (Group completion). Let S be an abelian semigroup. Then a group com-
pletion or Grothendieck group is an abelian group G(S), together with a homomorphism
ιS : S → G(S) satisfying the following universal property: For every abelian group
H together with a homomorphism ρ : S → H, there is a unique homomorphism
ρ : G(S) → H such that

S G(S)

H

ιS

ρ ∃! commutes.
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Proposition 2.8 (Grothendieck construction). Let S be an abelian semigroup. Then a
group completion exists and is unique up to unique isomorphism. In fact, there exists
a functor G from abelian semigroups to abelian groups such that for every semigroup
S, G(S) is a group completion of S.

Proof sketch. A concrete model is G(S) := S× S/ ≈, where the equivalence relation ≈
is defined by (g, h) ≈ (g′, h′) if there exists k ∈ S such that g+h′+k = g′+h+k (the
additional k is needed to show transitivity of the relation, in case that S does not have
the cancellation property g+k = h+k ⇒ g = h). One then shows that G(S) is a group
and sets ιS(g) = [g + k, k] for any k ∈ S (any choice of k yields the same element).
To show the universal property, observe that for any g, h ∈ S, [g, h] = ιS(g) − ιS(h),
hence for a given homomorphism ρ : S → H, we must have ρ([g, h]) = ρ(g) − ρ(h);
this indeed gives a well-defined group homomorphism ρ : G(S) → H.
If now ϕ : S → T is a homomorphism of semigroups, then ρ := ιT ◦ ϕ is homo-
morphism S to the group G(T), so by the universal property, there exists a unique
group homomorphism G(ϕ) := ρ : G(S) → G(T). One then verifies that for a second
homomorphism ψ : T → U, one has the functoriality G(ψ) ◦G(ϕ) = G(ψ ◦ϕ).

Remark 2.9. By the above, elements of G(S) can be represented by equivalence classes
of pairs of elements in S. We suggestively write g− h := [g, h] for g, h ∈ S.

Remark 2.10. By the universal property of the Grothendieck construction, for any
abelian semigroup S and any abelian group H, the canonical map

HomAb(G(S), H) −→ HomSAb(S,H), ϕ −→ ϕ ◦ ιS

is a bijection. Since it is natural in both S and H, this shows that the functor G : SAb →
Ab is left adjoint to the forgetful functor Ab → SAb.

Example 2.11. We have G(N) = Z; in fact the left hand side can be taken as a definition
of Z.

Example 2.12. If we set n+∞ = ∞+n = ∞ for n ∈ N and ∞+∞ = ∞, then N∪ {∞}

is a semigroup. Moreover, G(N ∪ {∞}) = {0}, because in groups, the cancellation rule
holds, that is, [n] + [∞] = [∞] implies [n] = [0] for all n ∈ N ∪ {∞}.
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2.3 Definition of K0

We have canonical embeddings Mn(A) → Mn+1(A) given by




a11 · · · a1n

... . . . ...
an1 · · · ann



 −→





a11 · · · a1n 0
... . . . ...

...
an1 · · · ann 0

0 · · · 0 0




. (14)

We denote by M∞(A) the union of all the Mn(A), that is, the direct limit in the cate-
gory of ∗-algebra. M∞(A) can be described as the ∗-algebra of infinite matrices with
entries in A, with only finitely many non-zero entries. Since all the inclusions Mn(A) →
Mn+1(A) are isometric, M∞(A) inherits a norm which satisfies the C∗-property but is
not complete.

Definition 2.13. Let A be a C∗-algebra.

(a) Two projections p, q ∈ M∞(A) are equivalent, if for some n ∈ N, p, q ∈ Mn(A) and
p ∼ q in Mn(A). The set of equivalence classes is denoted by V(A).

(b) If p, q ∈ M∞(A) are projections with p ∈ Mn(A), q ∈ Mm(A), we define

[p] + [q] := [diag(p, q)], where diag(p, q) ∈ Mn+m(A) ⊂ M∞(A).

To show well-definedness of the addition, notice that for all p ∈ Mn(A), q ∈ Mm(A),




p

q

0

0
. . .




∼





p

0

q

0
. . .




in M∞(A).

Remark 2.14. By Prop. 2.6, we can use any of the equivalence relations ∼, ∼u, ∼h to
obtain the same set V(A).

Lemma 2.15. Let A be a C∗-algebra. Then V(A) is an abelian semigroup.

Proof. Let p, q, r ∈ M∞(A) be projections with p ∈ Mn(A), q ∈ Mm(A) and
r ∈ Ml(A). Because of diag(diag(p, q), r) = diag(p, q, r) = diag(p,diag(q, r)) in
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Mn+m+l(A), the semigroup operation is associative. With

v =


0 q

p 0


, we have v∗v =


p 0

0 q


, vv∗ =


q 0

0 p


,

hence v is a partial isometry and diag(p, q) ∼ diag(q, p) in Mn+m(A). This shows that
the semigroup operation is commutative.

If A and B are C∗-algebras and Φ : A → B a ∗-homomorphism, one easily checks that

V(Φ) : V(A) → V(B), [p] → [Φ(p)]

gives a well-defined homomorphism of semigroups. If C is another C∗-algebra and
Ψ : B → C is a ∗-homomorphism, one clearly has V(Ψ) ◦ V(Φ) = V(Ψ ◦Φ), hence V is a
well-defined functor from C∗-algebras to abelian semigroups.

Definition 2.16 (The K0-functor). Let A be a C∗-algebra.

(a) The group K0(A) associated to A is defined by

K0(A) := ker

GV(εA) : GV(A+) → GV(C)


.

(b) Given another C∗-algebra B with a ∗-homomorphism Φ : A → B, define K0(Φ) :
K0(A) → K0(B) as the unique group homomorphism fitting in the commutative
diagram

K0(A) GV(A+) GV(C)

K0(B) GV(B+) GV(C).

K0(Φ)

GV(εA)

GV(Φ+)

GV(εB)

(15)

Notice that for C∗-algebras A, B and ∗-homomorphisms Φ : A → B, there is indeed
a unique group homomorphism K0(Φ) : K0(A) → K0(B) making (16) commute: By
injectivity of the inclusions K0(A) ↩→ GV(A+) and K0(B) ↩→ GV(B+), K0(Φ) must be the
restriction of GV(Φ+) to K0(A), and if x ∈ K0(A), then

0 = GV(εA)(x) = GV(εB)GV(Φ+)(x),

hence indeed GV(Φ+)(x) ∈ kerGV(εB) = K0(B).

Remark 2.17. If A is unital, then A+ ∼= A ⊕ C with εA being the projection onto the
second factor. Therefore, GV(A+) = GV(A) ⊕ GV(C) with GV(εA) being the pro-
jection onto the second factor. If Φ : A → B is a unital ∗-homomorphism, then
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GV(Φ+) = GV(Φ) ⊕ GV(idC) under this identification, hence on the subcategory of
unital C∗-algebras and unital ∗-homomorphisms, the functors GV and K0 are naturally
isomorphic. We will therefore often write K0 instead of GV for unital C∗-algebras. In
particular, for any C∗-algebra A, we have a short exact sequence

0 K0(A) K0(A
+) K0(C) 0

K0(εA)

Lemma 2.18. K0 is a functor from C∗-algebras to abelian groups.

Proof. Let A, B and C be C∗-algebras and Φ : A → B, Ψ : B → C be ∗-
homomorphisms. Consider the following diagram.

K0(A) GV(A+) GV(C)

K0(B) GV(B+) GV(C)

K0(C) GV(C+) GV(C)

K0(Φ)

K0(Ψ◦Φ)

GV(εA)

GV(Φ+)GV(Ψ◦Φ)

K0(Φ)

K0(εB)

GV(Φ+)

K0(εC)

(16)

Commutativity of the left-most triangle is equivalent to the desired equality K0(Ψ) ◦
K0(Φ) = K0(Ψ ◦ Φ). All squares commute by definition of the K0 maps, while com-
mutativity of the other triangle follows from functoriality of GV. In total, we obtain
that the entire diagram commutes.

Proposition 2.19 (A portrait of K0). Let A be a C∗-algebra.

(a) Any element x ∈ K0(A) can be written in the form x = [p] − [1n] for some n ∈ N,
with a projection p ∈ M∞(A+) and

1n :=





1
. . .

1
0




∈ M∞(A+).

Moreover, we can arrange p such that p− 1n ∈ M∞(A).

(b) For projections p, q ∈ M∞(A+), [p] − [q] = 0 in K0(A) if and only if there exists
m ∈ N such that diag(p, 1m) ∼ diag(q, 1m). Here ∼ can be replaced by ∼u or ∼h.

(c) If B is another C∗-algebra and Φ : A → B is a homomorphism, then for all projec-
tions p, q ∈ Mn(A), we have K0(Φ)([p]− [q]) = [Φ+(p)]− [Φ+(q)].

28



Proof. (a), first part. By definition of the Grothendieck group, any element x ∈ K0(A)
can be written as x = [p]− [q] with projections p, q ∈ M∞(A+) for some n ∈ N. Since
q is a projection, so is 1n − q, and

[q] + [1n − q] =


q 0

0 1n − q


= [1n],

as

u


q 0

0 1n − q


u∗ =


1n 0

0 0


for the unitary u =


q 1n − q

1n − q q


.

Therefore, if p ∈ Mm(A
+) and q ∈ Mn(A

+),

[p]− [q] = [p] + [1n − q]−

[q] + [1n − q]


=


p 0

0 1n − q


− [1n],

as claimed.
(b) Suppose that [p] − [q] = 0 in K0(A) for projections p, q ∈ Mn(A

+). By the
definition of the Grothendieck group, this implies that there exists a projection
r ∈ Mn(A

+) ⊂ M∞(A) such that diag(p, r) ∼ diag(q, r). We then also have
diag(p, r, 1n − r) ∼ diag(q, r, 1n − r). But by a similar calculation to the one just
above, we have diag(p, r, 1n − r) ∼ diag(p, 1n) and diag(q, r, 1n − r) ∼ diag(q, 1n).
Conversely, if diag(p, r) ∼ diag(q, r), then

[p]− [q] = ([p] + [r])− ([q] + [r]) =


p 0

0 r


−


q 0

0 r


= 0.

(a), second part. Let x = [p] − [1n] ∈ K0(A), where p ∈ M∞(A+) is a projection.
Since x ∈ kerK0(εA), we have [εA(p)] − [1n] = 0. By (b), there exists m ∈ N with
p ∈ Mm(A

+) and a unitary u ∈ Mm(C) ⊆ Mm(A
+) such that uεA(p)u∗ = 1n. Then

with the projection p′ = upu∗, we still have x = [p′]− [1n], but εA(p′)− 1n = 0, hence
p′ − 1n ∈ Mm(A).
(c) This follows from the universal property of the Grothendieck group, compare the
proof sketch of Prop. 2.8.

Example 2.20 (K0 of C). Two projections p, q ∈ Mn(C) are equivalent if and only if
they have the same rank, and the rank is additive under taking direct sums. Therefore
V(C) = N0 and K0(C) = Z (see Example 2.11). We conclude that the map

τ : K0(C) −→ Z, [p]− [q] −→ tr(p)− tr(q) (17)

is a well-defined group isomorphism.
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Example 2.21 (K0 of B(H)). Let H be a Hilbert space and A = B(H). Two projections in
Mn(A) ∼= B(Hn) are equivalent if and only if they have the same rank, and the rank is
additive under taking direct sums. Here the rank can be any number in N0 ∪ {∞}, and
the Grothendieck group of this semigroup is zero (Example 2.12).

2.4 Homotopy invariance

Definition 2.22 (Homotopy). Let A and B be C∗-algebras.

(a) A homotopy between ∗-homomorphisms Φ,Ψ : A → B is a family (Φt)t∈[0,1] of ∗-
homomorphisms such that Φ0 = Φ, Φ1 = Ψ and such that t → Φt(a) is continuous
for every a ∈ A.

(b) Two ∗-homomorphisms Φ,Ψ : A → B are called homotopic if there exists a homo-
topy between them.

(c) A ∗-homomorphism Φ : A → B is a homotopy equivalence if there exists a ∗-
homomorphism Φ′ : B → A such that both Φ ◦ Φ′ and Φ′ ◦ Φ are homotopic to
the identity.

Example 2.23. If X, Y are compact topological spaces, then a continuous map ϕ : X → Y

induces a ∗-homomorphism ϕ∗ : C(Y) → C(X), f → ϕ∗f by pullback. If ϕ and ψ

are two such maps, then a homotopy (of continuous maps) induces a homotopy of ∗-
homomorphisms between ϕ∗ and ψ∗, and if ϕ is a homotopy equivalence (in the sense
of topology), then ϕ∗ is a homotopy equivalence in the sense of Def. 2.22.

Theorem 2.24 (Homotopy invariance). Let A and B be C∗-algebras.

(a) If Φ,Ψ : A → B are homotopic ∗-homomorphisms, then K0(Φ) = K0(Ψ).

(b) If Φ : A → B is a homotopy equivalence, then K0(Φ) : K0(A) → K0(B) is an
isomorphism.
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Proof. (a) Let (Φt)t∈[0,1] be a homotopy between Φ and Ψ. Let x = [p] − [q] ∈ K0(A)
with p, q ∈ Mn(A). Then (Φ+

t (p))t∈[0,1] and (Φ+
t (q))t∈[0,1] are homotopies of projec-

tions between Φ+(p) and Ψ+(p), respectively Φ+(q), Ψ+(q). Hence by Prop. 2.19(c),

K0(Φ)(x) = [Φ+(p)]− [Φ+(q)] = [Ψ+(p)]− [Ψ+(q)] = K0(Ψ)(x).

(b) If Φ : A → B is a homotopy equivalence with homotopy inverse Φ′, then by
functoriality of K0 and the results of (a),

idK0(A) = K0(idA) = K0(Φ
′) ◦ K0(Φ) and idK0(B) = K0(idB) = K0(Φ) ◦ K0(Φ

′).

Hence K0(Φ) and K0(Φ
′) must be isomorphisms.

2.5 Continuity

Definition 2.25 (Directed set). A directed set is a set I with a partial order ≤ such that
any two elements have a common upper bound. In other words, for all objects i, j ∈ I,
there exists k ∈ I such that i ≤ k and j ≤ k.

Example 2.26. Any subset S ⊆ R gives rise to a directed set with the usual order
relation. The same statement is true for S replaced by any totally ordered set. An
example for a directed set which does not come from a total order is the set of finite-
dimensional subspaces of a Hilbert space H, ordered by inclusion.

Definition 2.27 (Direct limits). Let C be a category and let I be a directed set.

(a) A direct system in C is a collection of objects ci, i ∈ I, together with a collection of
morphisms ϕji : ci → cj for all i, j ∈ I with i ≤ j, such that ϕkj ◦ϕji = ϕki whenever
i ≤ j ≤ k.

(b) A cocone to a direct system {ci,ϕji}I in C is an object c of C together with a collection
of morphisms ψi : ci → c for each i ∈ I, such that whenever i ≤ j, the diagram

ci

c

cj

ϕji

ψi

ψj

commutes.
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(c) A cocone {c,ψi}I to a direct system {ci,ϕji}I is called a direct limit or colimit, if it
satisfies the following universal property: For every other cocone c′, there exists a
unique morphism c → c′ in C such that whenever i ≤ j, the diagram

ci

c c′

cj

ϕji

ψi

ψ′
i

∃!

ψj

ψ′
j

(18)

commutes. The direct limit is denoted by lim
−→ ci or colim ci.

Remark 2.28. A directed set I gives rise to a category with objects the elements of I and
precisely one morphism i → j if i ≤ j. From this point of view, a direct system in C is
just a functor I → C (i.e. a diagram in C), and the cocone and colimit coincide with the
corresponding notions in category theory.
Any directed set is in particular a filtered category. The latter is slightly more general
in that one drops the assumption that there is at most one morphism between any
two objects; instead one requires the existence of equalizers for each pair of parallel
morphisms α,α′ : i → j, i.e. a morphism β : j → k such that β ◦ α = β ◦ α′. All results
below are true with general filtered diagrams instead of directed sets, but it is usual in
this context (and slightly more convenient) to restrict to directed sets.

Example 2.29 (Direct limits of sets). In the category of sets, direct limits always exist.
If {ci,ϕji}I is a direct system of sets, a direct limit c can be constructed explicitly by

c =


i∈I

ci


∼ (19)

where for x ∈ ci, y ∈ cj, we declare x ∼ y if and only if there exist k ∈ I such that
ϕki(x) = ϕkj(x). The maps ψi : ci → c are just the obvious maps ψi(x) = [x].

Example 2.30 (Filtered colimits of algebraic structures). If C is a category of algebraic
structures such as the category of semigroups, groups, algebras or ∗-algebras, direct
limits always exist. To realize the direct limit of a direct system {ci,ϕji}I, use the con-
struction in Example 2.29 of the colimit c as a set and observe that one obtains induced
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algebraic structures on it in a (semi-)obvious way. For example, if each of the objects ci
is a semigroup, we obtain a well-defined multiplication on the set c defined in (19) by
defining [x] · [y] = [ϕki(x) ·ϕkj(y)] for x ∈ ci, y ∈ cj, where k ∈ I is such that i ≤ k and
j ≤ k.

Example 2.31 (Filtered colimits of C∗-algebras). In the category of C∗-algebras, direct
limits exist. To realize the direct limit of a direct system {Ai,Φji}I, start with the colimit
A in the category of ∗-algebras (see Example 2.30), and define a seminorm on A as
follows. For [a] ∈ A represented by a ∈ Ai, set

[a] := inf{Φji(a) | i ≤ j}, (20)

where we take the infimum over all j ∈ I with j ≥ i. One checks that this seminorm
is independent of the choice of a. Since ∗-homomorphisms are always contractive by
Prop. 1.16, the seminorm is finite (for non-unital algebras, the same result is true, after
passing to the unitalization). It satisfies the C∗-identity, as induced from that of the Ai.
The completion of A with respect to this norm is the required direct limit (note that the
canonical map A → A is not necessarily injective as the seminorm may be degenerate).

Example 2.32. Let {Ai,Φji}I be a direct system of C∗-algebras with direct limit {A,Ψi}I.
Then {Mn(A),Mn(Ψi)}I is the direct limit of the direct system {Mn(Ai),Mn(Φji)}I of
C∗-algebras.

Lemma 2.33. Let A be a C∗-algebra and a ∈ A be self-adjoint with a2 − a ≤ ε for
some ε < 1

4
. Then there exists a projection p ∈ A such that a− p ≤ 2ε.

Proof. Let B ⊂ A be the C∗-subalgebra generated by a. Since a is self-adjoint, B is
commutative and by Thm. 1.30, B ∼= C(σ(a)). Let f(λ) = λ2 − λ. Then

ε ≥ a2 − a = f(a) = sup
λ∈σ(a)

|f(λ)|.

Some analysis shows that (provided ε ≤ 1
4
), we have |λ2 − λ| ≤ ε if and only if

λ ∈ [−δ′, δ]∪[1−δ, 1+δ′], with δ =
1

2


1−

√
1− 4ε


, δ′ =

1

2

√
1+ 4ε− 1


.
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Notice that as functions of ε, we have δ, δ′ ≤ 2ε whenever ε ≤ 1
4
. We conclude that

σ(a) ⊂ [−δ′, δ]∪ [1−δ, 1+δ′], and that if ε < 1
4
, then 1

2
/∈ σ(a). Therefore, the function

H(λ) =


0 if λ ≤ 1

2

1 if λ > 1
2

satisfies sup
λ∈σ(a)

|H(λ)− λ| ≤ 2ε,

and is continuous on σ(a), that is H ∈ C(σ(a)). Therefore the self-adjoint element
p := H(a) ∈ A satisfies p− a ≤ 2ε and because H2 = H, p is a projection.

Corollary 2.34. Let {Ai,Φji}I be a direct system of C∗-algebras with direct limit {A,Ψi}I.
For each projection p ∈ A and any ε > 0, there exists i ∈ I and a projection pi ∈ Ai

such that p− Ψi(pi) ≤ ε.

Proof. By the explicit description of A (see Example 2.31), there exists a sequence
an ∈ Ain , n ∈ N such that Ψin(an) → p in A. Since p is self-adjoint (after possibly
replacing an by 1

2
(an + a∗

n)) we may assume that an is self-adjoint. As multiplication
in A is continuous, the sequence Ψin(an)

2 converges to p2 in A. Therefore, given any
ε > 0, we can choose n ∈ N large enough so that both

Ψin(an)
2 − p2 <

ε

5
, and Ψin(an)− p <

ε

5
.

Using that p = p2 is a projection, we therefore get

Ψin(a
2
n − an) ≤ Ψin(an)

2 − p2+ Ψin(an)− p <
2ε

5

By the definition of the norm of A, there exists j ≥ in such that a := Φjin(an) ∈ Aj

also satisfies a2−a < 2ε
5

. Therefore by Lemma 2.33, there exists a projection pj ∈ Aj

such that a− pj ≤ 4ε
5

. With this projection,

p− Ψj(pj) ≤ p− ΨjΦjin(an)+ Ψj(a)− Ψj(pj)

≤ p− Ψin(an)+ a− pj ≤ ε

5
+

4ε

5
= ε.

where we used that ∗-homomorphisms between C∗-algebras are contractive
(Prop. 1.16).

Proposition 2.35. If {Ai,Φji}I is a direct system of C∗-algebras with direct limit {A,Ψi}I,
then the collection {V(Ai),V(Φji)}I is a direct system of semigroups, and

V(A) ∼= lim
−→V(Ai).
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Proof. We verify the universal property. To this end, let {S,ψi}I be a cocone to the
direct system of semigroups {V(Ai),V(Φji)}I. We have to show that there exists a
unique semigroup homomorphism χ : V(A) → S such that χ ◦ V(Ψi) = ψi for all
i ∈ I.
On elements x ∈ V(A) of the form x = [Ψi(pi)] for some projection pi ∈ Mn(Ai), this
homomorphism must be given by

χ(x) = χ([Ψi(pi)]) = χ ◦ V(Ψi)([pi]) = ψi([pi]). (21)

But by Corollary 2.34, any element x ∈ V(A) is of this form: Indeed, if x = [p] for
some projection p ∈ Mn(A), then (since Mn(A) = lim

−→Mn(Ai) by Example 2.32),
Corollary 2.34 provides the existence of a projection pi ∈ Mn(Ai) such that p −
Ψi(pi) < 1

4
. By Lemma 2.5 and Prop. 2.6, we therefore have p ∼ Ψi(pi), in other

words [p] = [Ψi(pi)].
This shows that χ is uniquely determined by (21), and it is compatible with the maps
V(Ψi) and ψi by construction. It is also easy to see that it is additive. It therefore
only remains show that χ is indeed unambiguously defined by (21). In other words,
we have to show that if pi ∈ Mn(Ai) and pj ∈ Mn(Aj) are two projections such that
[Ψi(pi)] = [Ψj(pj)], then ψi([pi]) = ψj([pj]).
Assume first that Ψi(pi) − Ψj(pj) < 1

2
. Then by the definition of the norm of the

direct limit Mn(A), there exists k ≥ i, j such that also Φki(pi) −Φkj(pj) < 1
2
, which

(again by Lemma 2.5 and Prop. 2.6) implies that Φki(pi) ∼ Φkj(pj), hence

ψi([pi]) = ψk ◦ V(Φki([pi]) = ψk([Φki(pi)]) = ψk([Φkj(pj)]) = · · · = ψj([pj]).

In general, (after possibly increasing matrix dimensions), let (qt)t∈[0,1] a homotopy of
projections with q0 = Ψi(pi) and q1 = Ψj(pj). Choose a partition 0 = t0 < t1 < · · · <
tn = 1 with qtk −qtk−1

 < 1
4

and projections pik ∈ Aik with Ψik(pik)−qtk < 1
4
; here

we let pi0 = pi and pin = pj. Now

Ψik(pik)−Ψik−1
(pik−1

) ≤ Ψik(pik)−qtk+qtk −qtk−1
+qtk−1

−Ψik−1
(pik−1

) <
1

2
.

Hence by the previous step, ψik(pik) = ψik−1
(pik−1

) for all k = 1, . . . , n, which finishes
the proof.

Theorem 2.36 (Continuity). K-theory commutes with direct limits. In other words, if
{Ai,Φji}I is a direct system of C∗-algebras with direct limit {A,Ψi}I, then the collection
{K0(Ai), K0(Φji)}I is a direct system of groups, and

K0(A) = K0


lim
−→Ai


∼= lim
−→K0(Ai).
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Proof. By functoriality of K0, {K0(Ai), K0(Φji)}I and {GV(A+), GV(Φ+
ji)}I are direct sys-

tems of abelian groups. Moreover, we have the constant direct system {GV(C), id}I
(of course, GV(C) ∼= Z, but we don’t need this fact). Putting these together, we obtain
a short exact sequence of direct systems of abelian groups, i.e. for each i ≤ j, we have
a commutative diagram

0 K0(Ai) GV(A+
i ) GV(C) 0

0 K0(Aj) GV(A+
j ) GV(C) 0.

K0(Φji) GV(Φ+
ji)

GV(εAi
)

GV(εAj
)

This is just the definition of K0; the compatibility of these diagrams for three indices
i ≤ j ≤ k is just its functoriality, see the proof of Lemma 2.18. It is now well-known
that such a short exact sequence of direct systems yields a short exact sequence of the
direct limits, that is, we get a short exact sequence

0 lim
−→K0(Ai) lim

−→GV(A+
i ) lim

−→GV(C) 0 (22)

The term on the right is just isomorphic GV(C), as the corresponding direct system is
constant. To identify the middle term, we use that both the unitalization functor and
the Grothendieck functor are left adjoints, as noted in Remark 1.21 and Remark 2.10,
and it is a standard fact from category theory that left adjoints commute with di-
rect limits. Moreover, the functor V commutes with direct limits by Prop. 2.35. We
conclude that

lim
−→GV(A+

i ) = GV(lim
−→A+

i ) = GV(A+).

Put together, we obtain the commutative diagram

0 lim
−→K0(Ai) lim

−→GV(A+
i ) lim

−→GV(C) 0

0 K0(A) GV(A+) GV(C) 0

(23)

with exact rows. By the five lemma, the canonical map lim
−→K0(Ai) → K0(A) is an

isomorphism.
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2.6 Stability

Proposition 2.37. Let {Ai,Φji}I be a direct system of C∗-algebras with direct limit
{A,Ψi}I. Suppose that each of the structure maps Φji : Ai → Aj is injective. Then
for any C∗-algebras B, {Ai ⊗ B,Φji ⊗ idB}I is a direct system of C∗-algebras with direct
limit {A⊗ B,Ψi ⊗ idB}I.

Proof. To begin with, let A◦ =


i∈I Ψi(Ai) be the direct limit of {Ai,Φji}I in the cate-
gory of ∗-algebras. We claim that A◦ ⊗alg B is dense in A⊗ B. Indeed, if a ∈ A is the
limit of a sequence (an)n∈N in A◦, then for any b ∈ B, an ⊗ b converges to a ⊗ b in
A⊗ B, as by (8),

an ⊗ b− a⊗ b = (an − a)⊗ b ≤ an − ab.

Hence the closure of A◦ ⊗alg B in A ⊗ B contains A ⊗alg B, which is dense by the
definition of A⊗ B.
Clearly {A ⊗ B,Φi ⊗ idB}I is a cocone. To verify the universal property, let {C,Ψ′

i}I
be another cocone; we have to define a ∗-homomorphism Ξ : A◦ → B such that
Ξ ◦ Ψi = Ψ′

i for all i ∈ I. Clearly, on the subset A◦ ⊗alg B, Ξ must be given by

Ξ(Ψi(a)⊗ b) = Ψ′
i(a⊗ b), for a ∈ Ai, b ∈ B.

One easily verifies that this gives a well-defined ∗-homomorphism Ξ : A◦⊗alg B → C,
which satisfies Ξ ◦ Ψi = Ψ′

i by construction. We have to verify that Ξ is continuous
with respect to the spatial norm. To this end, let x =

m
n=1Ψin(an) ⊗ bn ∈ A◦ ⊗alg B,

for an ∈ Ain and bn ∈ B. Then there exists i ∈ I with i ≥ in for all n = 1, . . . ,m,
hence

x =

m

n=1

Φi(Φiin(an))⊗ bn = (Ψi ⊗ idB)
 m

n=1

Φiin(an)⊗ bn


. (24)

The fact about the spatial tensor product we use now is that since Ψi is assumed to
be injective, so is Φi ⊗ idB (Corollary 1.40). Therefore,

Ξ(x) =
Ψi

 m

n=1

Φiin(an)⊗ bn

 ≤


m

n=1

Φiin(an)⊗ bn

 = x

Here we used that ∗-homomorphisms are contractive (Prop. 1.16) together with (24)
and the fact that Φi ⊗ idB is isometric (Corollary 1.32).

Corollary 2.38. Let A be a C∗-algebra. Then the completion of the infinite matrix alge-
bra M∞(A) with respect to the C∗-norm induced by the inclusions Mn(A) → M∞(A)
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is isomorphic to the spatial tensor product A ⊗ K, where K is the algebra of compact
operators on an (infinite-dimensional) separable Hilbert space.

Proof. By Lemma 1.38, we have Mn(A) = A⊗Mn(C), and the embeddings Mn(A) →
Mm(A) for m ≥ n take the form idA ⊗ Jmn, where Jmn : Mn(C) → Mm(C) is the
canonical inclusion.
The limit of the direct system {Mn(C), Jmn}N in the category of ∗-algebras is M∞(C),
which can be identified with a dense subalgebra of F(H), the algebra of finite rank
operators on H = ℓ2(N), and the induced norm is just the operator norm. Hence the
C∗-algebraic direct limit is its closure, the space of compact operators,

lim
−→Mn(C) = K(H).

The result now follows from Prop. 2.37.

Theorem 2.39 (Stability). Let A be a C∗-algebra. Then the inclusion C → K = K(H) as
rank one operators induces an isomorphism

K0(A) ∼= K0(A⊗K).

Proof. Consider the direct system {Mn(A), Jmn}N, with direct limit {A ⊗ K(H), Jn}N
(Corollary 2.38). Therefore, by Continuity of K0, Thm. 2.36,

lim
−→K0(Mn(A)) = K0(A⊗K(H)).

On the other hand, by construction of K0, each of the maps K0(Jmn) : K0(Mn(A)) →
K0(Mm(A)) are isomorphisms. Hence {Mn(A), Jmn}N is the constant direct system,
with each turn isomorphic to K0(A) and the connecting maps the identity under this
identification. The result follows.

3 The K-theory long exact sequence

Let A be a C∗-algebra and J ⊂ A a closed ideal, leading to the short exact sequence

0 J A A/J 0.
ι π (25)

In this section, we construct the long exact sequence of K-theory corresponding to this
short exact sequence. Throughout, we denote the projection map on the quotient by
π : A → A/J and the inclusion map of the ideal by ι : J → A.
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Notice that associated to the short exact sequence (25), we also have the short exact
sequences

0 Mn(J) Mn(A) Mn(A/J) 0

0 J A+ (A/J)+ 0

ι π

ι π+

(26)

There are several further short exact sequences derived from this one, see §3.2.

3.1 Half-Exactness

Definition 3.1 (Homotopy of unitaries). Let A be a unital C∗-algebra. Two unitaries
u, v ∈ A are homotopic, denoted by u ∼h v, if there exists a continuous path of unitaries
(ut)t∈[0,1] such that u0 = u and u1 = v.

Lemma 3.2 (Lifting unitaries). Let A be a unital C∗-algebra and J ⊂ A a closed ideal.
Then for any unitary u ∈ A/J with u ∼h 1, there exists a unitary u ∈ A with π(u) = u

and u ∼h 1 in A.

Proof. First assume that u − 1 < 2. Then σ(u) is contained in {λ ∈ C | |λ − 1| < 2}.
In particular, −1 /∈ σ(u). On the other hand σ(u) is contained in the unit circle, as u

is unitary. Therefore the complex logarithm (defined such that Log eiθ = iθ for θ ∈
(−π,π)) is a continuous function on σ(u). Hence we may define z := Log(u) ∈ A/J.
z is skew-adjoint, since

z∗ = Log(u)∗ = Log(u∗) = Log(u−1) = −Log(u) = −z.

Let z ∈ A, be a lift of z (which exists by surjectivity of π). We may arrange z to be
skew-adjoint (by possibly replacing z by (z−z∗)/2). Then u := exp(z) is the required
lift of u. It is connected to 1 by the continuous path (ut)t∈[0,1] of unitaries given by

ut = exp(tLog(u)) (27)

For a general unitary u with u ∼h 1, let (ut)t∈[0,1] be a continuous path of unitaries
with u1 = u and u0 = 1n. Choose a partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1] such
that uti −uti−1

 < 2 for each i = 1, . . . , n. Then u∗
ti−1

uti − 1n < 2, hence there exist
lifts wi ∈ A+ of u∗

ti−1
uti . But then w1 · · · wn is a lift of u. Concatenating the paths (27)

gives a continuous path of unitaries from u to 1.

Remark 3.3. Conversely, the above proof shows that any unitary u ∈ A with u−1 <

2 automatically satisfies u ∼h 1, where the homotopy is implemented by the path (27)
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Corollary 3.4. For any unitary u ∈ A/J, the unitary diag(u, u∗) ∈ M2(A/J) has a uni-
tary lift w ∈ M2(A) with w ∼h 12n.

Proof. As seen in part (d) of the proof of Prop. 2.6, we have diag(u, u∗) ∼h 12n, hence
the statement follows from Lemma 3.2.

Theorem 3.5 (Half-exactness). Let A be a C∗-algebra and J ⊂ A a closed ideal. Then
the sequence of groups

K0(J) K0(A) K0(A/J)
K0(ι) K0(π)

is exact.

Proof. Clearly, if x ∈ K0(J), then by functoriality, K0(π) ◦ K0(ι)(x) = K0(π ◦ ι)(x) = 0.
Hence imK0(ι) ⊆ kerK0(π).
Let now x ∈ kerK0(π) with K0(π)(x) = 0. We have to show that x = K0(ι)(y) for some
y ∈ K0(J). According to Prop. 2.19(a), there exist a projection p ∈ M∞(A+) and n ∈ N
such that x = [p]− [1n] and p− 1n ∈ M∞(A). Since K0(π)(x) = 0, by Prop. 2.19(b), we
have diag(π+(p), 1k) ∼u 1n+k in M∞((A/J)+) for some k ∈ N. Denote p′ := diag(p, 1k),
and for some m ∈ N large enough, let u ∈ Mm((A/J)+) be a unitary such that

uπ+(p′)u∗ = u


π+(p)

1k


u∗ = 1n+k ∈ Mm((A/J)+)

Let w ∈ M2m(A
+) be a unitary lift of diag(u, u∗), which exists by Corollary 3.4, and

set

q := w


p′

0


w∗ ∈ M2m(A

+).

Then by construction, [q]− [1n+k] is another representative for x. On the other hand,
we have

π+(q) =


u

u∗


p′

0


u∗

u


=


up′u∗

0


=


1n+k

0


,

so q − 1n+k ∈ M2m(J) and q ∈ M2m(J
+). Therefore y := [q] − [1n+k] ∈ K0(J) is an

element with K0(ι)(y) = x.
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3.2 Cone and suspension

Definition 3.6 (Cone and suspension). Let A be a C∗-algebra.

(a) The cone of A is the C∗-algebra CA defined by

CA := {f ∈ C([0, 1], A) | f(0) = 0}.

(b) The suspension of A is the C∗-subalgebra SA ⊆ CA defined by

SA := {f ∈ CA | f(1) = 0.}

For ∗-homomorphisms Φ : A → B, we define CΦ : CA → CB by Φ(f)(t) = Φ(f(t));
SΦ : SA → SB is defined by the same formula. It is then clear that both C and S are
functors sending C∗-algebras to C∗-algebras. It is straightforward to verify that both
are exact functors, that is, applying them to the short exact sequence (25), one obtains
short exact sequences

0 CJ CA C(A/J) 0

0 SJ SA S(A/J) 0.

Cι Cπ

Sι Sπ

(28)

Definition 3.7 (Mapping cone and cylinder). Let A, B be C∗-algebras and let Φ : A → B

be a ∗-homomorphism.

(a) The mapping cone CΦ of Φ is defined as

CΦ = {(a, f) ∈ A⊕ CB | f(1) = Φ(a)}.

(b) The mapping cylinder ZΦ of Φ is defined as

ZΦ = {(a, f) ∈ A⊕ C([0, 1], B) | f(0) = Φ(a)}.

The mapping cone and mapping cylinders extend to functors from the category whose
objects are ∗-homomorphisms Φ : A → B and whose morphisms are commutative
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diagrams

A B

A′ B′

Φ

ΨA ΨB

Φ′

(29)

to the category of C∗-algebras. Namely, given such a commutative diagram, one ob-
tains a ∗-homomorphisms Ψ : ZΦ → ZΦ′ and Ψ : CΦ → CΦ′ by setting Ψ(a, f) =
(ΦA(a),ΨB ◦ f) ∈ A′ ⊕ C([0, 1], B′). It is easy to check functoriality with respect to
concatenation of diagrams (29).

Lemma 3.8. Let A be a C∗-algebra.

(a) The mapping cone CA is contractible, that is, the inclusion Φ : {0} → CA of the
trivial C∗-algebra is a homotopy equivalence.

(b) For any ∗-homomorphism Φ : A → B, projection onto the first component p1 :
ZΦ → A is a homotopy equivalence.

Proof. (a) Let Φ′ : CA → {0} be the trivial map (a ∗-homomorphism) and for t ∈ [0, 1],
consider the ∗-homomorphism Φt : CA → CA, f → ft, where ft(s) = f(ts). Then for
any f ∈ CA, t → Φt(f) is a continuous map (by compactness of [0, 1]) hence (Φt)t∈[0,1]
is a homotopy with Φ1 = id and Φ0 = Φ ◦Φ′. It follows now from Thm. 2.24(b) that
K0(CA) = {0}.
(b) We claim that a homotopy inverse is given by c : A → ZΦ, a → (a, ca), where
ca ∈ C([0, 1], B) is the function with ca(t) ≡ Φ(a) for all t ∈ [0, 1]: First, p1 ◦ c = idA.
On the other hand, consider the family of ∗-automorphisms Ψs, s ∈ [0, 1], of ZΦ given
by Ψs(a, f) := (a, fs), where for f ∈ C([0, 1], B), the function fs ∈ C([0, 1], B) is given
by

fs(t) :=


f(t− s) s ≤ t

f(1) s ≥ t

Then Ψ1 = c ◦ p1, while Ψ0 = idA. Hence also c ◦ p1 is homotopic to the identity.

3.3 The long exact sequence

Lemma 3.9. Let A be a C∗-algebra, J ⊆ A be a closed ideal and suppose that A/J is
contractible. Then K0(ι) : K0(J) → K0(A) is an isomorphism.
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Proof. First, notice that K0(ι) is surjective by half-exactness of K0 (Thm. 3.5), because
K0(A/J) = {0} by contractibility of A/J and homotopy invariance of K0 (Thm. 2.24).
To show injectivity of K0(ι), we use the mapping cylinder Zι. Notice here that by
Lemma 3.8(b), the projection map p1 : Zι → J, (a, f) → a is a homotopy equivalence
and hence K0(p1) : K0(Zι) → K0(J) is an isomorphism (Thm. 2.24).
On the other hand, Zι admits a surjective ∗-homomorphism ζ : Zι → Cπ to the map-
ping cone of π, given by ζ(a, f) = (f(1),π ◦ f), with ker(ζ) = CJ. Consider the
following commutative diagram with exact rows and colums, where i and p are the
obvious inclusion and projection maps, in view of Cπ ⊆ A⊕ C(A/J).

0

0 J A A/J 0

0 CJ Zι Cπ 0

S(A/J)

0

ι π

p1 ≃

ζ

p

i

Since CJ is contractible by Lemma 3.8(a) and S(A/J) is contractible by assump-
tion, the homomorphisms K0(ζ) and K0(p) are injective, again by half-exactness
and homotopy invariance of K0 (Thms 3.5 & 2.24). This shows that K0(ι) =
K0(p)K0(ζ)K0(p1)

−1 is injective as well.

Theorem 3.10 (Long exact sequence). Let A be a C∗-algebra and let J ⊂ A be a closed
ideal. Then there exists a boundary map δ : K0(S(A/J)) → K0(J) such that we have an
exact sequence of groups

K0(S(A/J)) K0(SA) K0(SJ)

K0(J) K0(A) K0(A/J).

δ (30)

Moreover, the map is functorial with respect to the short exact sequence, i.e. if Φ :
A → A′ is a ∗-homomorphism taking J to a closed ideal J′ ⊆ A′, then we obtain a
commutative diagram

K0(S(A/J)) K0(J)

K0(S(A
′/J′)) K0(J

′).

δ

δ′

43



Proof. We will use the short exact sequences

0 S(A/J) Cπ A 0

0 J Cπ C(A/J) 0

i p

j

(31)

involving the mapping cone Cπ of π : A → A/J. Again, all maps involved are just the
obvious inclusion and projection maps coming from viewing Cπ ⊂ A⊕ C(A/J).

Definition of the boundary map: This is done with the diagram

K0(SA) K0(S(A/J)) K0(J) K0(A).

K0(Cπ)

K0(Sπ)

K0(i)

−δ K0(ι)

K0(j)

∼= (32)

Since C(A/J) is contractible by Lemma 3.8(a), Lemma 3.9 implies that the map K0(j) is
an isomorphism. Therefore, we can define δ = −K0(j)

−1K0(i). Naturality of δ follows
from the functoriality of the cone construction. It is left to verify exactness of the top
row of this diagram.

Exactness at K0(J): We have the commutative diagram

K0(S(A/J)) K0(Cπ) K0(A)

K0(S(A/J)) K0(J) K0(A).

K0(i) K0(p)

−δ

K0(j)∼=

K0(ι)

The top row is exact (in the middle) by half-exactness of K0, Thm. 3.5, applied to the
first short exact sequence in (31). Since K0(j) is an isomorphism, this implies that also
the bottom row is exact.

Exactness at K0(S(A/J)): At this point we know that for any C∗-algebra A1 with a
closed ideal J1 ⊆ A1, the sequence

K0(S(A1/J1) K0(J1) K0(A1) K0(A1/J1)
δ1 K0(ι1) K0(π1) (33)

is exact. The trick is to apply this to the first exact sequence in (31), that is, we set
J1 := S(A/J) and A1 := Cπ, with maps ι1 = i, π1 = p, which then gives A1/J1 ∼= A.
Substituting these definitions in (33), we obtain that the top row of the diagram

K0(SA) K0(S(A/J)) K0(Cπ) K0(A)

K0(SA) K0(S(A/J)) K0(J) K0(A)

δ1 K0(i) K0(p)

K0(Sπ) −δ K0(ι)

∼= K0(j) (34)

44



is exact. We have seen that the two squares on the right hand side commute; since
both K0(j) and K0(σ) are isomorphisms, the exactness of the top row implies that of
the bottom row, provided that we can verify that the left-most square commutes as
well, that is, δ1 = K0(Sπ).
To see this, we need to look more closely at the derived short exact sequences (31) for
our new exact sequence (33). These are

0 SA Cπ1
Cπ 0

and 0 S(A/J) Cπ1
CA 0,

i1 p1

j1

(35)

involving the mapping cone Cπ1
of π1 : Cπ → A. Since π1 is just the projection onto

the first factor of Cπ ⊆ A ⊕ C(A/J), upon going through the definitions, one finds
that the mapping cone can be identified with

Cπ1
= {(g, f) ∈ C(A/J)⊕ CA | g(1) = π(f(1))},

in such a way that the maps i1 and j1 in (35) are just the obvious inclusion maps
under this identification. Since δ1 = −K0(j1)

−1K0(i1), we have

δ1 = K0(Sπ) ⇐⇒ −K0(i1) = K0(j1 ◦ Sπ).

The idea is therefore to construct a homotopy between the ∗-homomorphisms i1 and
j1 ◦ Sπ from SA to Cπ1

. Going through the definition, one finds

i1(f) = (0, f), (j1 ◦ Sπ)(f) = (π ◦ f, 0).

Consider now the collection (Φs)s∈[0,1] of ∗-homomorphisms Φs : SA → Cπ1
given by

Φs(f) = (fC(A/J)
s , fCAs ), with

fC(A/J)
s (t) =


0 t ∈ [0, 1− s]

π(f(2− t− s)) t ∈ [1− s, 1]

fCAs (t) =


0 t ∈ [0, s]

f(t− s) t ∈ [s, 1].

It is a homotopy with Φ0 = i1 and Φ1 = j1 ◦ Sπ ◦ σ, where σ : SA → SA is the
∗-automorphism defined by σ(f)(t) = f(1− t). By homotopy invariance (Thm. 2.24),
we therefore have K0(i1) = K0(j1 ◦ Sπ) ◦ K0(σ), or equivalently δ1 = −K0(Sπ) ◦ K0(σ).
To finish the proof, one could now show that K0(σ) = −idK0(SA), which is not too
hard. However this is not necessary: Instead, one can observe that so far, we have
shown that the diagram (34) commutes if one replaces the left-most identity arrow
by the automorphism −K0(σ). But also for this new diagram, exactness of the top
row implies that of the bottom row.
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Corollary 3.11 (Split-exactness). Let A be a C∗-algebra with a closed ideal J ⊆ A such
that the short exact sequence (25) splits, that is, there exists a ∗-homomorphism s :
A/J → A such that π ◦ s = idA/J. Then

K0(A) ∼= K0(J)⊕ K0(A/J).

Proof. The splitting map s provides a group homomorphism K0(s) : K0(J) → K0(A)
such that K0(π)K0(s) = idK0(A/J). This shows that K0(π) must be surjective. Taking
suspensions, we obtain that also K0(Sπ) is surjective, hence by exactness, δ = 0.
Therefore K0(ι) is injective. Therefore, we obtain a split exact short exact sequence

0 K0(J) K0(A) K0(A/J) 0.
K0(ι)

K0(π)

K0(s)

As we are in the category of abelian groups, this implies that K0(ι) ⊕ K0(s) : K0(J) ⊕
K0(A/J) → K0(A) is an isomorphism.

Remark 3.12. Of course, if A is isomorphic to J⊕A/J as a C∗-algebra, such that ι and π

are just the inclusion respectively the projection map under this identification, then the
result follows directly from the definition of K0. However, the existence of a splitting
s : A/J → A does not imply A ∼= J⊕A/J as C∗-algebras. For example, if A is non-unital,
then usually A+ is not isomorphic to the direct sum A ⊕ C. However, Corollary 3.11
implies that we always have

K0(A
+) ∼= K0(A)⊕ Z. (36)

To obtain a formula for the boundary map, we need the following lemma.

Lemma 3.13. Let A be a C∗-algebra and let f ∈ Mm(CA
+) be a projection with f(0) =

1n, where n ≤ m. Then there exists a unitary u ∈ Mm((CA)+) with u(0) = 1m such
that f(t) = u(t)1nu(t)

∗.

Proof. We have f ∼h 1n, as the path fs defined by fs(t) = f(st) is a homotopy.
By Prop. 2.6(a), this implies f ∼u 1n. This implies the existence of a unitary
u′ ∈ Mm((CA)+) such that f(t) = u′(t)1nu

′(t)∗ for t ∈ [0, 1]. For t = 0, this implies
1n = u′(0)1nu(0), hence u′(0) = diag(v,w) for unitaries v ∈ Mn(A), w ∈ Mm−n(A)
(see Lemma 5.7 below). Therefore u(t) = u′(t)u′(0)∗ also satisfies f(t) = u(t)1nu(t)

∗,
and u(0) = 1m.
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Proposition 3.14. Let A be a C∗-algebra and let J ⊂ A be a closed ideal. Then the
boundary map in the long exact sequence (30) has the following explicit formula: Rep-
resent x ∈ K0(S(A/J)) as x = [f] − [1n], where f ∈ Mm(S(A/J)+), m ≥ n such that
f − 1n ∈ Mm(S(A/J)), and choose a projection f ∈ Mm((CA)+), f(0) = 1n such that
π+(f(t)) = f(t) for all t ∈ [0, 1]. Then

δ(x) = [f(1)]− [f(0)]. (37)

Proof. To see the existence of a lift, consider f as a projection in the larger space
M∞(C(A/J)+). Then by Lemma 3.13, there exists a unitary u ∈ Mm(C(A/J)+) with
u(0) = 1m such that f = u1nu

∗. We have u ∼h 1m since the family of paths (us)s∈[0,1]
defined by us(t) = u(st) provides a homotopy; hence by Lemma 3.2, there exists
a unitary lift u ∈ Mm(CA

+) of u, which automatically satisfies u(0) = 1m. Then f
defined by f(t) := u(t)1nu(t)∗ is the desired lift of f.
We have f(1) ∈ Mm(J

+), as

π+(f(1)) = π+(u(1))1nπ
+(u(1))∗ = u(1)1nu(1)

∗ = f(1) = 1n.

In particular, since f(0) = 1n, this implies f(1) − f(0) ∈ Mn(J), hence [f(1)] − [f(0)] is
a well-defined element of K0(J).
Since δ is defined by δ = −K0(j)

−1◦K0(i), in order to see the formula (37), we compare
K0(j)([f(1)]− [f(0)]) with K0(i)(x) in K0(Cπ). Remember that the maps j : J → Cπ and
i : S(A/J) → Cπ are given by j(a) = (a, 0), respectively i(f) = (0, f). Therefore,

j+(f(1)) = j(f− 1n) + j+(1n) = (f(1)− 1n, 0) + (1n, 1n) = (f(1), 1n),

where we use that (1, 1) is the unit of (CA)+. We therefore have

K0(j)([f(1)]− [f(0)]) = [(f(1), 1n)]− [(f(0), 1n)].

On the other hand,

K0(i)(x) = [i+(f)]− [i+(1n)] = [(1n, f)]− [(1n, 1n)]

We have to show that these elements are add to zero in K0(Cπ). This follows from the
calculation

[(f(1), 1n)] + [(1n, f)] =

f(1) 0

0 1n


,


1n 0

0 f



(∗)
=

f(1) 0

0 1n


,


f 0

0 1n



(†)
=


1n 0

0 1n


,


1n 0

0 1n



= 2[(1n, 1n)],
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where we have to justify the equalities (∗) and (†). For (∗), we use the homotopy
(qs)s∈[0,1] of projections in M2m(C

+
π ), defined by

qs =

f(1) 0

0 1n


, rs


1n 0

0 f


r∗s


, where rs =


cos


πs
2


− sin


πs
2



sin

πs
2


cos


πs
2



;

observe here that due to the fact that f(1) = 1n, each qs indeed defines a matrix with
values in the mapping cone Cπ.
For the equality (†), consider the homotopy (ps)s∈[0,1] of projections in Mm(C

+
π ) given

by
ps = (fs(1),π ◦ fs), with fs(t) = f(st).

Then p0 = (1n, 1n) and p1 = (f(1), f). Stabilising this, we obtain a homotopy imple-
menting (†).

4 Bott Periodicity

In this section, we prove the main result of operator K-theory, Bott periodicity. Through-
out this section, we identify SnC⊗A ∼= SnA, in view of Example 1.41.

4.1 The exterior product

Let A, B be two C∗-algebras. If p ∈ Mn(A), q ∈ Mm(B) are projections, then their
tensor product p⊗q ∈ Mn(A)⊗Mm(B) ∼= Mnm(A⊗B) is again a projection. Applying
the V functor, we obtain a well-defined map

× : V(A)× V(B) −→ V(A⊗ B), ([p], [q]) −→ [p⊗ q], (38)

which is N-bilinear. Applying the Grothendieck construction, we obtain a Z-bilinear
product on the associated Grothendieck groups. On the category of unital C∗-algebras,
where we can identify K0 = GV (see Remark 2.17), this gives a product map × : K0(A)×
K0(B) → K0(A ⊗ B). By construction, the map is natural in the sense that for any pair
of unital ∗-homomorphisms Φ : A → A′, Ψ : B → B′, the diagram

K0(A)× K0(B) K0(A⊗ B)

K0(A
′)× K0(B

′) K0(A
′ ⊗ B′)

×

K0(Φ)×K0(Ψ) K0(Φ⊗Ψ)

×

(39)

commutes.
To extend this construction to the non-unital case, we need the following lemma.
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Lemma 4.1. Let A, B be C∗-algebras. Then we naturally have

K0(A
+ ⊗ B+) ∼= K0(A⊗ B)⊕ K0(A)⊕ K0(B)⊕ Z.

Moreover, under this identification, we have

K0(A⊗ B) = ker(K0(εA ⊗ idB+)) ∩ ker(K0(idA+ ⊗ εB)) ⊂ K0(A
+ ⊗ B+). (40)

Proof. This follows easily from split-exactness, Corollary 3.11, as we have the split
exact sequences

0 A⊗ B+ A+ ⊗ B+ B+ 0,

0 A⊗ B A⊗ B+ A 0,

εA⊗idB+

idA⊗εB

as well as K0(A
+) = K0(A)⊕ Z, K0(B

+) = K0(B)⊕ Z, see (36).

Corollary 4.2. The product map defined above sends K0(A)×K0(B) ⊂ K0(A
+)×K0(B

+)
to K0(A⊗ B) ⊂ K0(A

+ ⊗ B+).

Proof. If x ∈ K0(A) ⊂ K0(A
+) and y ⊂ K0(B) ⊂ K0(B

+), then by the naturality prop-
erty (39),

K0(εA ⊗ idB+)(x× y) = K0(εA)(x)× y = 0,

K0(idA+ ⊗ εB)(x× y) = x× K0(εB)(y) = 0

From (40), it then follows that x× y ∈ K0(A⊗ B).

We can now make the following definition.

Definition 4.3 (Exterior product). Let A and B be C∗-algebras. The product

× : K0(A)× K0(B) −→ K0(A⊗ B), (x, y) → x× y, (41)

defined above is called the exterior product.

Lemma 4.4 (Properties of the exterior product). Let A, B be C∗-algebras.

(a) The exterior product is natural, in the sense that for any pair of ∗-homomorphisms
Φ : A → A′, Ψ : B → B′, the diagram (39) commutes.
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(b) The class 1 ∈ Z ∼= K0(C) is a two-sided unit for the exterior product, meaning that
under the canonical isomorphisms K0(C⊗A) ∼= K0(A) and K0(A⊗C) ∼= K0(A), the
elements 1× x, respectively x× 1 are identified with x, for any x ∈ K0(A).

(c) The exterior product is commutative, in the sense that

x× y = K0(σ)(y× x), (42)

for all x ∈ K0(A) and y ∈ K0(B), where σ : A ⊗ B → B ⊗ A is the symmetry
isomorphism of the tensor product.

Proof. All of these properties are induced by the analogous properties of the product
(38), for which they are easily verified.

4.2 The Töplitz exact sequence and the Bott element

Throughout this section, we denote K = K(ℓ2(N)), B = B(ℓ2(N)).

Definition 4.5 (Toeplitz algebra). The Toeplitz algebra T ⊂ B is the subalgebra generated
by the shift operator, explicitly

(Sα)n =


αn−1 n ≥ 2

0 n = 1,
α ∈ ℓ2(N).

Lemma 4.6. We have K ⊂ T.

Proof. Let e1, e2, . . . be the canonical basis of ℓ2(N). Then id − SS∗ = e1 ⊗ e∗1, the
projection onto the one-dimensional subspace spanned by e1. More generally, we
have em ⊗ e∗n = Sm(id − SS∗)(S∗)n for any m,n ∈ N. Taking the linear span of these
operators, we see that T contains all finite rank operators. But since by definition, T is
norm-closed, it must contain the closure of the finite rank operators, which is K.

Proposition 4.7. We have σ(S) = D := {λ ∈ C | |λ| ≤ 1} and σess(S) = T.

Remember here that the essential spectrum is the set of number λ ∈ C such that λ − S

is not a Fredholm operator (see Example 1.13). We use the following criterion.
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Lemma 4.8. Let H be a Hilbert space and T ∈ B(H). Given λ ∈ C, assume that there
exists a sequence (vn)n∈N in H without accumulation point such that vn = 1 for each
n ∈ N and Tvn − λvn → 0. Then λ ∈ σess(T).

Proof. Let (vn)n∈N be a sequence with vn = 1 for each n ∈ N and Tvn − λvn → 0.
Suppose that λ − T is a Fredholm operator. Then there exists S ∈ B(H) such that
S(λ− T) = idH + K, with K ∈ K(H). Since K is compact and vn = 1 for each n ∈ N,
the sequence (Kvn)n∈N has an accumulation point w ∈ H. On the other hand, we
have

vn = S(λ− T)vn − Kvn.

Since S(λ − T)vn converges to zero, after passing the a subsequence, the right hand
side converges to w. Therefore (vn)n∈N has an accumulation point.

Proof of Prop. 4.7. First of all, observe that since S = 1, we have σ(S) ⊆ {λ ∈ C |

|λ| ≤ 1}.
For each λ ∈ C with |λ| < 1, the sequence α with αn = λn is contained in ℓ2(N) and
satisfies S∗α = λα. Hence λ ∈ σ(S∗) and λ ∈ σ(S). On the other hand, since S∗S = id,
the operator T := −

∞
n=0 λ

n(S∗)n+1 satisfies (λ− S)T = id and

T(λ− S) = −

∞

n=0

λn+1(S∗)n+1 +

∞

n=0

λnSS∗(S∗)n = id + (SS∗ − id)
∞

n=0

λn(S∗)n.

Since id − SS∗ ∈ K, we see that T is a parametrix for S, so that S is Fredholm. We
conclude that λ /∈ σess(T).
Let now λ ∈ C with |λ| = 1. For m ∈ N, define a sequence α(m) ∈ ℓ2(N) by α

(m)
n =

λn/
√
m if n ≤ m and α

(m)
n = 0 for n > m. Then α(m) = 1 and

(λ− S)α(m) =


0 if n < m or n > m

λm+1/
√
m if n = m.

We obtain that (λ− S)α(m)2 = 1/m, which converges to zero as m → ∞. Moreover,
since the sequence α(m) converges pointwise to zero, the only possible accumulation
point is zero; but this is impossible since α(m) = 1 for all m ∈ N. Hence α(m) has no
accumulation point. We conclude from Lemma 4.8 that λ ∈ σess(S).

Proposition 4.9. There exists a unique surjective ∗-homomorphism π : T → C(T) such
that π(S) = z, the identity function on T. Moreover, ker(π) = K, hence we have a short
exact sequence

0 K T C(T) 0.
ι π (43)
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Proof. Clearly, K is an ideal in T. Consider the C∗-algebra A := T/K. Since T is
generated by S, A is generated by [S]. As S∗S = id and id − SS∗ ∈ K, [S] ∈ T/K
is unitary, so A is commutative, and by Thm. 1.30, we have an isomorphism A ∼=
C(σ([S])) such that [S] → idσ([S]).
It remains to show that σ([S]) = T. By Prop. 1.29, the spectrum of [S] in A is the same
as the spectrum of [S] in the Calkin algebra B/K. Therefore, by Prop. 4.7 σ([S]) =
σess(S) = T (see Example 1.13).

Indentify SC ⊂ C([0, 1]) with {f ∈ C(T) | f(1) = 0} ⊂ C(T) by sending e2πit to the
function z ∈ C(T). Let T0 = ker(q), where q = ev1 ◦ π : T → C. Then the diagram

0 K T0 SC 0

0 K T C(T) 0

ι π

ι π

(44)

has exact rows.

Definition 4.10 (Bott element). A Bott element is an element b ∈ K0(S
2C) such that

δ(b) ∈ K0(K) is the class defined by a rank one projection, where δ is the boundary
map to the upper row in (44).

Theorem 4.11. A Bott element exists.

Proof. We identify SC with {f ∈ C(T) | f(1) = 0} ⊂ C(T) by sending the function
f(s) = e2πis to the identity function z on C(T). Define a unitary uBott ∈ M2(S

2C+) ⊂
M2(SC(T)+) by

uBott(t) =


cos


πt
2


− sin


πt
2


z

sin

πt
2


z cos


πt
2




cos

πt
2


sin


πt
2



− sin

πt
2


cos


πt
2




(45)

It satisfies uBott(0) = 12, uBott(1) = diag(z, z), therefore

pBott = uBott


1 0

0 0


u∗

Bott (46)

is a projection in M2(S
2C+) with pBott − 11 ∈ M2(S

2C). Hence b := [pBott]− [11] defines
an element of K0(S

2C).
To calculate δ(b), we use (37). The unitary U ∈ M2(ST

+
0 ) = M2(ST) defined by

U(t) =


cos


πt
2


− sin


πt
2


S∗

sin

πt
2


S cos


πt
2


SS∗ + (1 − SS∗)


cos


πt
2


sin


πt
2



− sin

πt
2


cos


πt
2
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is a lift of uBott with U(0) = 12. Hence

δ(b) =


U(1)


1 0

0 0


U(1)∗


−


1 0

0 0


=


1 0

0 1 − SS∗


−


1 0

0 0


= [1 − SS∗]

Since 1 − SS∗ is a rank one projection in K, the result follows.

We finish this section with the following lemma. which is needed in the next section.

Lemma 4.12. For any C∗-algebra A, the rows of the commutative diagram

0 K⊗A T0 ⊗A SA 0

0 K⊗A T ⊗A C(T)⊗A 0

ι⊗idA π⊗idA

ι⊗idA π⊗idA

are exact.

Proof. It suffices to consider the second sequence. By Corollary 1.40, the map ι⊗ idA

is injective, hence we naturally have K⊗A ⊂ T ⊗A. It is also straightforward to see
that K⊗A is an ideal in T⊗A. Because the relation (π⊗ idA)◦(ι⊗ idA) = 0 is still true
(since it holds on the dense subset K⊗alg A ⊂ K⊗A), we obtain a ∗-homomorphism

Φ : (T ⊗A)/(K⊗A) −→ C(T)⊗A.

It is surjective, because the dense inclusion C(T) ⊗alg A ⊂ C(T) ⊗ A factors through
Φ:

C(T)⊗alg A ∼= (T ⊗alg A)/(K⊗alg A) (T ⊗A)/(K⊗A) C(T)⊗A.
Ψ Φ

Since Ψ : C(T)⊗alg A → (T⊗A)/(K⊗A) is an injective ∗-homomorphism with dense
image (also by the diagram above), it induces a C∗-norm  · α on C(T) ⊗alg A such
that the corresponding completion C(T)⊗α A ∼= (T ⊗A)/(K⊗A). As seen, it comes
with surjective ∗-homomorphism C(T)⊗α A → C(T)⊗A, therefore  · σ ≤  · α.
There are several ways to see that  · α ≤  · σ. For example, it is a fact that C(T)
is nuclear, meaning that all C∗-norms on C(T) ⊗alg A coincide. Another approach
uses the group C∗-algebra C∗(Z), which is the C∗-subalgebra of B(ℓ2(Z)) generated by
the unilateral translation U, defined by (Uα)n = αn+1 for α = (αn)n∈Z ∈ ℓ2(Z). It
is commutative, and since σ(U) = T, the Gelfand transform provides a canonical
isomorphism to C(T) (this is just the inverse discrete Fourier transform). Now there
is a contractive linear map

s : C(T) ∼= C∗(Z) −→ T, f −→ Tf := Vf̌V∗,

where f̌ is the inverse Gelfand transform of f and V : ℓ2(Z) → ℓ2(N) is the orthogonal
projection. s is a section of π, that is (π ◦ s) = idC(T).
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The map s is not a ∗-homomorphism (so the associated K-theory sequence does not
split), but is a completely positive map, meaning that for all n ∈ N, the induced map on
matrices Mn(s) maps positive elements to positive elements. In particular, tensoring
with idA provides a contraction s ⊗ idA : C(T) ⊗ A → T ⊗ A (a general fact about
completely positive maps, which can also easily be seen from the concrete form of s).
We therefore obtain a contractive linear map

C(T)⊗A T ⊗A (T ⊗A)/(K⊗A) ∼= C(T)⊗α A.
s⊗idA

Hence  · α ≤  · σ and C(T)⊗α A ∼= C(T)⊗A.

Remark 4.13. Above, we have essentially proved the following general result for gen-
eral C∗-algebras A, B and a closed ideal J ⊆ A: Assume that there exists a completely
positive map s : A/J → A such that π ◦ s = idA/J or that A/J is nuclear. Then the short
sequence

0 J⊗ B A⊗ B A/J⊗ B 0
ι⊗idB π⊗idB

is exact.

4.3 The periodicity theorem

Throughout, let b ∈ K0(S
2C) be the Bott element constructed in the proof of Thm. 4.11.

In fact, it will follows from Bott periodicity, Thm. 4.15 below, that the Bott element is
in fact unique; this is irrelevant for the proof of Bott periodicity, but justifies to refer to
“the” Bott element henceforth.

Definition 4.14 (Bott map). For any C∗-algebra A the Bott map of A is the map

βA : K0(A) −→ K0(S
2C⊗A) = K0(S

2A), x → b× x,

given by taking the exterior product with the Bott element.

It is clear from naturality of the exterior product, Lemma 4.4(a), that the Bott map is
natural, that is, for each ∗-homomorphism Φ : A → B between C∗-algebras A, B, we
have a commutative diagram

K0(A) K0(B)

K0(S
2A) K0(S

2B).

K0(Φ)

βA βB

K0(S
2Φ)

(47)
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In other words, the Bott maps assemble to a natural transformation β : K0 ⇒ K0S
2.

Theorem 4.15 (Bott periodicity). For each C∗-algebra A, the Bott map βA is an isomor-
phism. In other words, the functors K0 and K0S

2 are naturally isomorphic.

The proof of Thm. 4.15 goes by constructing an inverse transformation α : K0S
2 → K0.

This is done as follows: Tensoring the upper sequence of (44) with a given C∗-algebra
A, we obtain the sequence

0 K⊗A T0 ⊗A SA 0. (48)

which is exact by Lemma 4.12. By Thm. 3.10, it therefore gives rise to a long exact
sequence in K-theory, the relevant part of which is

· · · K0(S(T0 ⊗A)) K0(S
2A) K0(K⊗A) K0(T0 ⊗A) · · ·δA

with δA the corresponding differential. It is natural in A, as the differential depends
naturally on the exact sequence.
Let λ : C → K be the inclusion as rank one operators, so that K0(λ ⊗ idA) : K0(A) →
K0(K⊗A) is an isomorphism by Thm. 2.39. We now define

αA : K0(S
2A) → K0(A), by αA := K0(λ⊗ idA)

−1 ◦ δA.

It is then clear that the maps αA assemble to a natural transformation of functors α :
K0S

2 ⇒ K0. In other words, for any ∗-homomorphism Φ : A → B between C∗-algebras
A, B, the diagram

K0(S
2A) K0(S

2B)

K0(A) K0(B).

αA

K0(S
2Φ)

αB

K0(Φ)

commutes.

Lemma 4.16. For any other C∗-algebra B and x ∈ K0(S
2A), y ∈ K0(B), we have

αA⊗B(x⊗ y) = αA(x)× y.

Proof. Observe that by the definition (32) we have δA = K0(jA)
−1 ◦ K0(iA), where jA :

K⊗A → Cπ⊗idA
and iA : S(SC⊗A) → Cπ⊗idA

are the inclusion maps into the mapping
cone. Under the canonical isomorphisms Cπ⊗idA

∼= Cπ⊗A and S(SC⊗A) ∼= S2C⊗A,
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these maps take the form jA = jC ⊗ idA and iA = iC ⊗ idA. We obtain that

αA = K0(λ⊗ idA)
−1K0(jC ⊗ idA)

−1K0(iC ⊗ idA).

The statement now follows from the naturality (39) of the product.

Proof of Thm. 4.15. We show that both α ◦β and β ◦α are the identity transformation.
First, the identity αA ◦ βA = id follows from the calculation

(αA ◦ βA)(x) = αA(b× x) = αC(b)× x = 1× x = x,

for x ∈ K0(A), where we used property (2) and then property (1) of α.
Showing the identity βA ◦ αA = id is more involved. For any C∗-algebra A, denote
by

σA : S2C⊗A → A⊗ S2C, f⊗ a −→ a⊗ f

the “flip map”. Observe that for these maps, we have the identity

(idS2C ⊗ σA) ◦ (σS2C ⊗ idA) = σS2C⊗A : S2C⊗ S2C⊗A −→ S2C⊗A⊗ S2C. (49)

The important fact is now that

K0(σS2C ⊗ idA) = id. (50)

on K0(S
2C ⊗ S2C ⊗ A). To see this, identify S2C ∼= C0((0, 1)

2) ∼= C0(R2) and notice
that under this identification, σS2C(f) = Q∗f, where Q is the linear map given by the
matrix

Q =





1

1

1

1



 .

Since this is a determinant one orthogonal matrix, it can be connected to the identity
matrix by a continuous path (Qt)t∈[0,1] in SO(4); then Φt(f) := Q∗

tf, t ∈ [0, 1], is a
continuous family of ∗-homomorphisms with Φ1 = σS2C, Φ0 = id. The claim now
follows from homotopy invariance, Thm. 2.24.
With these preparations, we calculate using that

x× b = K0(σS2C⊗A)(b× x) Lemma 4.4(c)
= K0(idS2C ⊗ σA)K0(σS2C ⊗ idA)(b× x) (49)

= K0(S
2σA)(b× x). (50)

(51)

Here we used that idS2C ⊗ σA
∼= S2σA under the identification S2C⊗A ∼= S2A. Calcu-
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lating further, we get for any x ∈ K0(S
2C⊗A) ∼= K0(S

2A) that

(K0(σA) ◦ βA ◦ αA)(x) = K0(σA)(b× αA(x))

= αA(x)× b

= αA⊗S2C(x× b) Lemma 4.16(b)

= (αA⊗S2C ◦ K0(S
2σA))(b× x) (51)

= (K0(σA) ◦ αS2C⊗A)(b× x) naturality of α
= K0(σA)(x) α left inverse to β

Because σA and hence K0(σA) is an isomorphism, the result follows.

Corollary 4.17. The Bott element is unique.

Proof. By Bott periodicity, the map βC = K0(λ)
−1 ◦ δC : K0(C) → K0(S

2C) is an
isomorphism, that is, K0(S

2C) = K0(C) = Z. Since K0(λ) is an isomorphism,
δC : K0(S

2C) → K0(K) is an isomorphism as well. Hence there exists a unique el-
ement b such that δ(b) corresponds to the element 1 ∈ Z ∼= K0(K).

5 The K1-functor and the six-term exact sequence

In this chapter, we finish our exposition of the K-theory of C∗-algebras by introducing
the K1-functor, which gives important interpretation for the boundary maps in the K-
theory six-term sequence.

5.1 Definition of K1

Definition 5.1 (Unitary groups). Let A be a C∗-algebra. For any n ∈ N, write

U+
n(A) := {u ∈ Mn(A)+ | u unitary and u = 1n + a, a ∈ Mn(A)}.

Denote by U+
n(A)0 ⊂ U+

n(A) the normal subgroup of those unitaries homotopic to 1n.

There exist the obvious inclusion maps U+
n(A) → U+

n+1(A) given by



a11 · · · a1n

... . . . ...
an1 · · · ann



 −→





a11 · · · a1n 0
... . . . ...

...
an1 · · · ann 0

0 · · · 0 1




.
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By U+
∞(A), we denote the union of all the U+

n(A), that is, the direct limit with respect to
the above inclusion maps. We have U+

∞(A) ⊂ M∞(A)+, which induces a topology on
U+

∞(A).

Definition 5.2 (The K1-functor). Let A be a C∗-algebra.

(a) We define
K1(A) := U+

∞(A)/U+
∞(A)0.

(b) If B is another C∗-algebra and Φ : A → B is a ∗-homomorphism, we define

K1(Φ) : K1(A) → K1(B), [u] −→ [Φ+(u)].

In total, K1 is a functor from the category of C∗-algebras to the category of groups.

Remark 5.3. If A is unital, then A+ = A ⊕ C and the map u → (u − 1n, 1) provides
an isomorphism from the unitary group Un(A) to U+

n(A). However, even in the unital
case, we need the groups U+

n(A) to deal with non-unital ∗-homomorphisms Φ : A → B.
Namely, for u ∈ Mn(A) unitary, Φ(u) is in general only a partial isometry, but Φ+ maps
U+

∞(A) to U+
∞(B).

Lemma 5.4. Let A be a C∗-algebra. Elements x, y ∈ K1(A) coincide if and only if there
exists n ∈ N and a homotopy (ut)t∈[0,1] of unitaries ut ∈ U+

n(A) with x = [u0] and
y = [u1].

Proof. First observe that two unitaries u0, u1 ∈ U+
∞(A) represent the same class in

K1(A) if and only if they are homotopic: If they are homotopic, they are clearly in
the same connected component, that is, in the same coset of U+

∞(A)0. Conversely,
elements in same connected component can be joined by a path of unitaries.
We now prove that one can restrict to homotopies that lie in some U+

n(A) through-
out. Clearly, homotopies in U+

n(A) give rise to homotopies in U+
∞(A). Conversely, let

(ut)t∈[0,1] be a homotopy in U+
∞(A). Choose a partition 0 = t0 < t1 < · · · < tn = 1

such that uti − uti−1
 < 2. Then the unitaries uti all lie in some U+

m(A), for some
m ∈ N. But by remark Remark 3.3, since uti − uti−1

 < 2 (this also holds within
U+

m(A)), there exists a homotopy in U+
m between uti−1

and uti ; concatenating these
homotopies gives a homotopy in U+

m(A) between u0 and u1.

Lemma 5.5. For any C∗-algebra A, K1(A) is abelian. Moreover, if u ∈ U+
n(A) and v ∈

U+
m(A), then [uv] = [diag(u, v)] in K1(A).
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Proof. Let x, y ∈ K1(A) and write x = [u], y = [w] with u,w ∈ U+
n(A). Define

elements in U+
2n(A) by

rt :=


cos


πt
2


1n − sin


πt
2


1n

sin

πt
2


1n cos


πt
2


1n


, wt :=


u 0

0 1n


rt


w 0

0 1n


r∗t .

Notice that, while rt is not contained in U+
2n(A) but only in U2n(A

+), we never-
theless have wt ∈ U+

2n(A). Then (wt)t∈[0,1] is a continuous path in U+
2n(A) with

w0 = diag(uw, 1n) and w1 = diag(u,w). Define a continuous path (w′
t)t∈[0,1] by

swapping the roles of u and w in the formula above, so that w′
0 = diag(wu, 1n) and

w′
1 = diag(w,u). Finally, define a path (vt)t∈[0,1] by

vt = rt


u 0

0 w


r∗t .

Then (vt)t∈[0,1] is a continuous path in U+
2n(A) with v0 = diag(u,w) and v1 =

diag(w,u). Concatenating these paths appropriately gives a continuous path of uni-
taries in U+

2n(A) from diag(uv, 1n) to diag(vu, 1n). This proves the claim.

5.2 Identification with Suspension

Theorem 5.6. For any C∗-algebra A, there exists a canonical isomorphism

ηA : K1(A) −→ K0(SA)

such that for each ∗-homomorphism Φ : A → B, the diagram

K1(A) K1(B)

K0(SA) K0(SB).

K1(Φ)

ηA ηB

K0(SΦ)

(52)

commutes. In other words, the maps ηA assemble to a natural isomorphism of functors
η : K1 ⇒ K0S.

We will need the following lemma.

Lemma 5.7. Let A be a C∗-algebra. Let m ≥ n and let w ∈ M2n(A) be unitary such that

w


1n 0

0 0


w∗ =


1n 0

0 0


∈ M2(Mn(A)) ∼= M2n(A).
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Then there exist unitaries u, v ∈ Mn(A), such that w = diag(u, v).

Proof. Let

w =


u a

b v



with u, a, b, v ∈ Mn(A). We have to show that a = b = 0. Since w is unitary,


1n 0

0 1n


= ww∗ =


u a

b v


u∗ b∗

a∗ v∗


in particular


1n = u∗u+ a∗a

1n = bb∗ + vv∗.

But 
u a

b v


1n 0

0 0


u∗ b∗

a∗ v∗


=


1n 0

0 0


implies


1n = u∗u

0 = bb∗.

Putting together, we get a∗a = b∗b = 0, hence a = b = 0 (this follows from the
C∗-property, as a2 = a∗a = 0 and similarly for b).

Proof of Thm. 5.6. We will start with the definition of ηA, then show injectivity and
surjectivity of ηA and then verify that the square (52) commutes.

Definition of ηA: For A a C∗-algebra the map ηA : K1(A) → K0(SA) is defined as
follows. Given x ∈ K1(A), write x = [u] with u ∈ U+

n(A) and let (wt)t∈[0,1] be a
homotopy in U+

2n(A) with w1 = diag(u, u∗) and w0 = 12n (such a homotopy exists by
Corollary 3.4). Then set

ηA(x) :=

f

− [1n] ∈ K0(SA) with f(t) = wt


1n 0

0 0


w∗

t .

Notice that indeed, f(t) is a projection for every t ∈ [0, 1] and f(0) = f(1) = 1n, so
f ∈ M2n(SA

+).
We have to check that ηA is independent from the choice of representative in U+

n(A)
and the choice of homotopy (wt)t∈[0,1], as well as the choice of n ∈ N.

(1) Independence of n ∈ N: Write

wt =


at bt

ct dt


so that f(t) =


ata

∗
t atc

∗
t

cta
∗
t dtc

∗
t


. (53)

If we set u′ := diag(u, 1m) for m ∈ N, then (w′
t)t∈[0,1] with

w′
t :=





at 0 bt 0

0 1m 0

ct 0 dt 0

0 0 0 1m



 (54)
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is a homotopy of unitaries from diag(u′, (u′)∗) to 12n+2m, and the corresponding
path of projections is

f′(t) := w′
t





1n 0 0 0

0 1m 0

0 0 0 0

0 0 0 0



 (w′
t)

∗ =





ata
∗
t 0 atc

∗
t 0

0 1m 0 0

cta
∗
t 0 dtc

∗
t 0

0 0 0 0



 = σ





ata
∗
t atc

∗
t 0 0

cta
∗
t dtc

∗
t 0 0

0 0 1m 0

0 0 0 0



σ∗

=





1n 0 0 0

0 0 1m 0

0 1n 0 0

0 0 0 1m









ata
∗
t atc

∗
t 0 0

cta
∗
t dtc

∗
t 0 0

0 0 1m 0

0 0 0 0









1n 0 0 0

0 0 1m 0

0 1n 0 0

0 0 0 1m





∗

.

(55)
With a view on (53), this shows that f′ ∼u diag(f, 1m) for all t ∈ [0, 1], hence

[f′]− [1n+m] =


f 0

0 1m


− [1n+m] = [f]− [1n],

as desired.

(2) Independence of representative and homotopy: Let u′ ∈ U+
n(A) with u′ ∼h u and

let (w′
t)t∈[0,1] be a homotopy in U+

2n(A) with w′
1 = diag(u′, (u′)∗) and w0 = 12n.

We will show that the path of projections f′(t) = w′
t diag(1n, 0)(w

′
t)

∗ is unitary
equivalent to the path f.
To this end, let (ut)t∈[0,1] be a homotopy in U+

n(A) with u0 = u and u1 = u′ (here
we need to possibly increase n before). Set now v(t) = wt diag(u∗ut, uu

∗
t )(w

′
t)

∗.
Then v(t) is unitary for each t ∈ [0, 1], with v(0) = 12n and

v(1) = w1


u∗u1 0

0 uu∗
1


(w′

1)
∗ =


u 0

0 u∗


u∗u′ 0

0 u(u′)∗


(u′)∗ 0

0 u′


=


1n 0

0 1n


.

Hence v is a unitary element in M2n(SA
+). Moreover,

v(t)f′(t)v(t)∗ = wt


u∗ut 0

0 uu∗
t


1n 0

0 0


u∗
tu 0

0 utu
∗


w∗

t = wt


1n 0

0 0


w∗

t = f(t).

This shows that f′ ∼u f in M2n(SA
+).

Homomorphism property: If x, x′ ∈ K1(A), represent them by unitaries u, u′ ∈ U+
n(A).

By Lemma 5.5, we have x + x′ = diag(u, u′). Let (wt)t∈[0,1] and (w′
t)t∈[0,1] be ho-

motopies of unitaries in M2n(A
+) with w0 = w′

0 and w1 = diag(u, u∗), w′
1 =

diag(u′, (u′)∗) and let f, f′ ∈ M2n(A
+) be the corresponding projections so that

ηA(x) = [f]− [1n], ηA(x
′) = [f′]− [1n]

We define vt = sdiag(wt, w
′
t)s

∗, where s ∈ M4n(C) ⊂ M4n(A
+) is the permutation

matrix that previously appeared in (55). This gives a homotopy (vt)t∈[0,1] with v0 =
14n and v1 = (diag(u, u′, u∗, (u′)∗)). Hence

ηA(x+ y) = [g]− [12n], where g(t) = vt


12n 0

0 0


v∗t .
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But

vt


12n 0

0 0


v∗t = s


wt 0

0 w′
t






1n

0

1n

0






w∗

t 0

0 (w′
t)

∗


s∗ = s


f 0

0 f′


s∗,

hence, since the loop constant equal to s defines an element of M4n(C) ⊂ M4n((SA)+),
we have

ηA(x+ x′) = [g]− [12n] = [f]− [1n] + [f′]− [1n] = ηA(x) + ηA(x
′),

as desired.

Injectivity: Let x ∈ K1(A) with ηA(x) = 0. Represent x = [u] with u ∈ U+
n(A) and let

f(t) = wt diag(1n, 0)w
∗
t ∈ M2n(A

+), where f is a homotopy from diag(u, u∗) to 12n in
M2n(A). Then

0 = ηA(x) = [f]− [1n]

in K0(SA).
We first treat the special case that f ∼u diag(1n, 0) in M2n((SA)+). This means that
there exists a homotopy (vt)t∈[0,1] of unitaries in M2n(A

+) with v0 = v1 = 12n and for
all t ∈ [0, 1], 

1n 0

0 0


= vtf(t)v

∗
t = vtwt


1n 0

0 0


(wtvt)

∗.

By Lemma 5.7, vtwt has the form vtwt = diag(ut, u
′
t) for homotopies of unitaries

(ut)t∈[0,1], (u′
t)t∈[0,1]. By construction, u0 = 1n and u1 = u, so that (ut)t∈[0,1] implements

u ∼ 1n. Therefore x = [u] = 0.
We finish by showing that the general case can be reduced to the special case just
treated. In general, [f]− [1n] = 0 only means that diag(f, 1m) ∼u 1n+m for some m ∈ N
and all t ∈ [0, 1]. Write u′ = diag(u, 1m) ∈ Mn+m(A

+) (which is also a representative
for x) and let (w′

t)t∈[0,1] be the homotopy from diag(u′, (u′)∗) to 12n+2m given in (54).
Then as calculated in (55),

diag(f(t), 1m) ∼u w′
t





1n 0 0 0

0 1m 0

0 0 0 0

0 0 0 0



 (w′
t)

∗ =: f′(t).

Thus
ηA(x) = [f]− [1n] =


diag(f, 1m)


− [1n+m] = [f′]− [1n+m],

where by the choice of f′, we have f′ ∼u 1n+m in M2n+2m((SA)+). This reduces to the
special case above.

Surjectivity: Let y ∈ K0(SA). By Prop. 2.19(a), we can represent y = [f]− [1n] for some
n ∈ N and some projection f ∈ M∞((SA)+) with f − 1n ∈ M∞(SA). As discussed in
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Prop. 3.14 there exists m ≥ n and a homotopy (wt)t∈[0,1] of unitaries in Mm(A
+) such

that f(t) = wt diag(1n, 0)w
∗
t for all t ∈ [0, 1]. Moreover, we may assume that m = 2n

(otherwise represent y = [(diag(f, 1k))]− [1n+k] for some suitable k instead). We now
have 

1n 0

0 0


= f(1) = w1


1n 0

0 0


w∗

1,

so by Lemma 5.7, w1 = diag(u, v) for unitaries u, v ∈ U+
n(A). If now (w′

t)t∈[0,1] is a
homotopy of unitaries with w′

0 = 12n and w′
1 = diag(u, u∗), then by definition, we

have

ηA([u]) = [f′]− [1n], where f′(t) = w′
t


1n 0

0 0


(w′

t)
∗.

To see that y is in the image of ηA, we will show that [f′]− [1n] = y.
Suppose first that v ∼h u∗ in U+

n(A). Then there exists a homotopy (st)t∈[0,1] of uni-
taries with s0 = 1n and s1 = v∗u∗. Therefore

f(t) = wt


1n 0

0 0


w∗

t = wt


1n 0

0 st


1n 0

0 0


1n 0

0 st

∗

w∗
t

= wt


1n 0

0 st


(w′

t)
∗f′(t)w′

t


1n 0

0 st

∗

w∗
t

for all t ∈ [0, 1]. Now one easily checks that homotopy (wt diag(1n, st)(w
′
t)

∗) starts
and ends at 12n, hence defines a unitary element in M2n((SA)+) and implements
f ∼u f′.
In general, diag(u, v) ∼ 12n only implies that diag(u, 1m) ∼h diag(v, 1m) for some
m ∈ N, but this case can be reduced to the previous one by stabilising appropriately,
as before.

Commutativity of (52): Let x ∈ K1(A) and represent x = [u] with u ∈ U+
n(A). Let

moreover (wt)t∈[0,1] be a homotopy with w1 = diag(u, u∗) and w0 = 12n, so that
ηA(x) = [f] − [1n] with f(t) := wt diag(1n, 0)w

∗
t . Then K1(Φ)(x) = [Φ+(u)] and

(Φ+(wt))t∈[0,1] is a homotopy between diag(Φ+(u),Φ+(u)∗) and 12n. Therefore

ηB([Φ
+(u)]) =


Φ+(wt)


1n 0

0 0


Φ+(wt)

∗

− [1n] =


Φ+(f)


− [1n]

hence
ηB ◦ K1(Φ)(x) = ηB([Φ

+(u)])

=

Φ+(f)


− [1n]

= K0(SΦ)([f]− [1n])

= K0(SΦ) ◦ ηA(x),

as desired.
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Example 5.8 (The Bott element, again). The function z ∈ SC+ = C(T) is unitary and
hence defines an element of K1(SC). We calculate the image of the class [z] under
ηSC : K1(SC) → K0(S

2C). To this end, we need a path w of unitaries with w(0) = 12,
w(1) = diag(z, z). The standard construction, exhibited in the proof of Prop. 2.6(d), is

w(t) =


z 0

0 1


cos


πt
2


− sin


πt
2



sin

πt
2


cos


πt
2




z 0

0 1


cos


πt
2


sin


πt
2



− sin

πt
2


cos


πt
2



,

which is just uBott, defined in (45). Hence

η([z]) =


uBott


1 0

0 0


u∗

Bott


−


1 0

0 0


= b,

the Bott element.

5.3 The index map

Definition 5.9 (Index map). Let A be a C∗-algebra and J ⊂ A a closed ideal. Let δ

be the boundary map to the short exact sequence (25). The index map is the group
homomorphism Ind : K1(A/J) −→ K0(J) making the diagram

K1(A/J) K0(S(A/J))

K0(J)

ηA/J

Ind

δ

commutative.

Proposition 5.10 (Formula for the index map). Let A be a C∗-algebra and J ⊂ A a
closed ideal. Given u ∈ U+

n(A/J), choose w ∈ U+
2n(A) with π+(w) = diag(u, u∗). Then

Ind([u]) =

w


1n 0

0 0


w∗


−


1n 0

0 0


∈ K0(J). (56)
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Proof. We remark first of all that such a lift w exists by Corollary 3.4). Observe that
Ind([u]) does not depend on the choice of lift. Namely, if w′ is another left, then we
set v = w′ w∗ and observe that π+(v) = 12n, hence v ∈ K0(J

+). Therefore, in V(J+), we
have 

w′


1n 0

0 0


(w′)∗


=


vw


1n 0

0 0


w∗v∗


=


w


1n 0

0 0


w∗



We may therefore assume that w ∼h 12n (such a lift exists by Corollary 3.4) . In this
case, let (wt)t∈[0,1] be a continuous family of unitaries wt ∈ U+

2n(A) such that w0 = 12n,
w1 = w. Set moreover wt = π+(wt) for t ∈ [0, 1]. Then by the definition of η,

ηA/J([u]) = [f]− [1n], f(t) = wt


1n 0

0 0


w∗

t .

Moreover, the path f of projections in M2n(A
+) given by f(t) = wt diag(1n, 0)w∗

t is a
lift of f, hence by the formula (37), we have

δ([f]) = [f(1)]− [f(0)].

But this is precisely (56).

Proposition 5.11. Let A be a unital C∗-algebra and let J ⊂ A be a closed ideal. Let
v ∈ A be a partial isometry such that 1 − v∗v ∈ J and 1 − vv∗ ∈ J. Then π(v) ∈ U(A/J)
and

Ind([π(v)]) = [1 − v∗v]− [1 − vv∗] ∈ K0(J).

Here we use Remark 5.3 to identify U(A/J) with U+(A/J), in order to see how π(v)
defines an element of K1(A/J).

Proof. Since 1 − v∗v, 1 − vv∗ ∈ J, we have

π(v)∗π(v) = π(v∗v) = 1 and π(v)π(v)∗ = 1.

Hence π(v) is indeed unitary in A/J. Moreover, one easily checks that

u :=


v 1 − vv∗

1 − v∗v v∗


∈ M2(A)

is a unitary lift of diag(π(v),π(v)∗) ∈ M2(A/J). Now by (56), we have

Ind([π(v)]) =

u


1 0

0 0


u∗


−


1 0

0 0



=


vv∗ 0

0 1 − v∗v


−


1 0

0 0



= [vv∗] + [1 − v∗v]− [1]
= [1 − v∗v]− [1 − vv∗],

where we used that [1] = [vv∗] + [1 − vv∗] (see e.g. the proof of Prop. 2.19(a)).
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Example 5.12 (The Bott element, once more). Because the adjoint shift operator S∗ ∈
T+
0 = T is a partial isometry lifting the unitary z ∈ SC+, we have by Prop. 5.11

Ind([z]) = [1 − SS∗]− [1 − S∗S] = [1 − SS∗].

This gives another proof that ηSC([z]) is a Bott element.

Remember that an operator T ∈ B is called Fredholm if π(T) ∈ B/K is invertible. In this
case, its index is defined as

ind(T) := dim ker(T)− dim coker(T) = dim ker(T)− dim ker(T ∗).

Remark 5.13. Let T ∈ B be a Fredholm operator. That π(T) is invertible means that
there exists a parametrix S ∈ B with TS − 1 =: K ∈ K and ST − 1 =: L ∈ K. Hence
ker(T) ⊆ ker(ST) = ker(1+L), which is the eigenspace to eigenvalue −1 of L. But since
L is compact, this is finite-dimensional. Similarly, ker(T ∗) ⊆ ker(S∗T ∗) = ker(1 + K∗) is
finite-dimensional. Thus ind(T) is well-defined.

Proposition 5.14. Let V ∈ B be partial isometry which is Fredholm. Then

Ind([π(V)]) = [Pker(V)]− [Pker(V∗)] (57)

where Pker(V) and Pker(V∗) are the orthogonal projections onto ker(V), respectively
ker(V∗) and Ind is the index map for the pair K ⊂ B. In particular,

τ(Ind(π(V))) = ind(V), (58)

where τ : K0(K) → Z is the isomorphism that sends a rank one projection to 1 ∈ Z.

Proof. We claim that

1 − V∗V = Pker(V), and 1 − VV∗ = Pker(V∗). (59)

Indeed, if ϕ ∈ ker(V), then (1−V∗V)ϕ = ϕ, while if ϕ ∈ ker(V)⊥ = im(V∗), we have
ϕ = V∗ψ for some ψ ∈ H. Therefore using (12)

(1 − V∗V)ϕ = ϕ− V∗VV∗ψ = ϕ− V∗ψ = ϕ−ϕ = 0.

This shows the first identity in (59); the second follows from replacing V by V∗. For-
mula (57) is now a consequence of Prop. 5.11.
Formula (58) follows from observing that τ([P] − [Q]) = tr(P) − tr(Q) (see Exam-
ple 2.20) and that the trace of a projection is equal to its rank.
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5.4 The exponential map

We start by deriving a more explicit formula for the Bott map in terms of the K1 group.

Proposition 5.15. Let A be a C∗-algebra. For a projection p ∈ Mn(A
+), define the

projection loop fp ∈ Mn(C([0, 1], A
+)) by

fp(t) = e−2πitp+ 1n − p. (60)

Then the composition β′
A := η−1

SA ◦ βA : K0(A) → K1(SA) is given by the formula

β′
A([p]− [q]) −→ [fpf

∗
q].

for projections p, q ∈ Mn(A
+) such that p− q ∈ Mn(A).

Remark 5.16. We generally do not have fp ∈ U+
n(SA). However, if [p] − [q] ∈ K0(A)

such that p − q ∈ Mn(A), then εA(p) = εA(q). Since εA(fp(t)) = fεA(p)(t) ∈ Mn(C), we
therefore obtain εA(fq(t)fq(t)

∗) = 1n in Mn(C), hence fpf
∗
q ∈ U+

n(SA).

Proof. It suffices to verify this for unital algebras A, since η−1
SA ◦βA is the restriction of

η−1
SA+ ◦ βA+. As η−1

SA ◦ βA is homomorphism, it moreover suffices to verify that

ηSA([fp]) = b× [p] = [pBott ⊗ p]−


1 0

0 0


⊗ p


.

To calculate the left hand side, we need to choose a path w in U+
2n(SA) connecting 12n

to diag(fp, f∗p); in other words, an element w ∈ C([0, 1]2, A) with w(t, 0) = w(0, s) =
w(1, s) = 12n and w(t, 1) = diag(fp, f∗p). Then

ηSA([fp]) =


w


1n 0

0 0


w∗


−


1n 0

0 0



A possible choice is

w =


fp 0

0 1n


cos


πs
2


− sin


πs
2



sin

πs
2


cos


πs
2




f∗p 0

0 1n


cos


πs
2


sin


πs
2



− sin

πs
2


cos


πs
2




=


cos


πs
2


p − sin


πs
2


zp

sin

πs
2


zp cos


πs
2


p


cos


πs
2


sin


πs
2



− sin

πs
2


cos


πs
2



+


1n − p 0

0 1n − p



= uBott ⊗ p+


1 0

0 1


⊗ (1n − p),

where we wrote z = e2πit and uBott is the unitary (45) used in the definition (46) of the
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Bott projection. Therefore

ηSA([fp]) =


uBott


1 0

0 0


u∗

Bott ⊗ p


+


1 0

0 0


⊗ (1n − p)


−


1n 0

0 0



= [pBott ⊗ p]−


1 0

0 0


⊗ p


,

which is what needed to be shown.

Definition 5.17 (Exponential map). Let A be a C∗-algebra and J ⊂ A be a closed ideal.
Then the corresponding exponential map is the map Exp : K0(A/J) → K1(J) such that the
square

K0(A/J) K0(S
2(A/J))

K1(J) K0(SJ),

βA/J

∼=

Exp Sδ

ηJ

∼=

(61)

commutes, where Sδ is the boundary map to the suspended ideal SJ ⊆ SA.

Proposition 5.18 (Formula for the exponential map). Let A be a C∗-algebra and let
J ⊂ A be a closed ideal. The exponential map can be described as follows. Given
x ∈ K0(A/J), represent x = [p]− [1k] with a projection p ∈ Mn((A/J)+), n ≥ k such that
p− 1k ∈ Mn(A/J). Then

Exp(x) =

exp(2πip)


, (62)

where p ∈ Mn(A
+) is some self-adjoint lift of p.

Remark 5.19. We emphasize that p is not required to be a projection as well. In fact, if
p ∈ Mn(A

+) is also a projection, then it has spectrum σ(p) ⊆ {0, 1}, hence exp(2πip) =
1n, which represents the zero element of K1(J). So in this sense, the exponential map
provides a measure of the failure of p to lift to a projection.

Proof. Observe first that indeed exp(−2πip) ∈ U+
m(J), as it is a unitary in Mm(J

+) and

π+

exp(2πip)


= exp(2πip) = 1m,

hence exp(2πip)− 1m ∈ Mm(J).
As before, we may assume that A is unitary. Let p ∈ Mn(A/J) be a projection. To use
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the previous results, extend the Diagram (61) as follows:

K1(S(A/J))

K0(A/J) K0(S
2(A/J))

K1(J) K0(SJ),

S Ind

ηS(A/J)

β′
A/J

βA/J

∼=

Exp Sδ

ηJ

∼=

where S Ind : K1(S(A/J)) → K0(SJ) is the index map corresponding to the suspended
ideal SJ ⊂ SA. Then by Prop. 5.15 and Def. 5.9, we can write

(Sδ ◦ βA/J)([p]) = (Sδ ◦ ηS(A/J))([fp]) = S Ind([fp]),

We then want to verify
S Ind([fp]) = ηJ([p]).

To calculate the left hand side, let w ∈ M2n(SA) be a unitary lift of diag(fp, f∗p), that
is w(0) = w(1) = 12n and π+(w(t)) = diag(fp(t), f∗p(t)) for all t ∈ [0, 1]. Then by the
formula for the index map, Prop. 5.10, we have

S Ind([fp]) =

w


1n 0

0 0


w∗


−


1n 0

0 0


.

On the other hand, let p ∈ Mn(A) be a self-adjoint lift of p and define u(t) :=
exp(2πitp). Then

π+(u(t)) = exp(2πitp) = e2πitp+ 1n − p = fp(t)
∗.

Therefore, if we set

v(t) := w(t)


u(t) 0

0 u(t)∗

,

then π+(v(t)) = 12n for all t ∈ [0, 1], hence we obtain a continuous path of unitaries
in M2n(J

+) with v(0) = 12n and v(1) = diag(exp(2πip), exp(−2πip)). Therefore, by
definition of ηJ,

ηJ([exp(2πip)]) =

v


1n 0

0 0


v∗

−


1n 0

0 0



=


w

u 0

0 u∗


1n 0

0 0


u∗ 0

0 u


w∗


−


1n 0

0 0



=


w


1n 0

0 0


w∗


−


1n 0

0 0


= S Ind([p])

This finishes the proof.
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5.5 The six-term exact sequence

Theorem 5.20 (The six-term sequence). Let A be a C∗-algebra and let J ⊂ A be a closed
ideal. Then the six-term sequence

K0(J) K0(A) K0(A/J)

K1(A/J) K1(A) K1(J)

K0(ι) K0(π)

ExpInd

K1(π) K1(ι)

is exact.

Proof. So far, from Thm. 3.10, we know the exactness of the (non-dashed) spiral se-
quence

K0(S
2J) K0(S

2A) K0(S
2(A/J))

K0(J) K0(A) K0(A/J)

K0(S(A/J)) K0(SA) K0(SJ).

K0(S
2ι) K0(S

2π)

Sδ

K0(ι)

βJ ∼=

K0(π)

βA ∼= βA/J ∼=

δ

K0(Sπ) K0(Sι)

However, the Bott periodicity isomorphisms (dashed) provide an exact K0-K0S-six-
term sequence, where the right boundary map K0(A/J) → K0(SJ) is Sδ ◦ βA/J. Here
the commutativity of the above diagram follows from naturality of β. The commu-
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tativity of the diagram

K0(J) K0(A) K0(A/J)

K0(S(A/J)) K0(SA) K0(SJ)

K1(A/J) K1(A) K1(J),

K0(ι) K0(π)

Sδ◦βA/J

Exp

δ

K0(Sπ) K0(Sι)

Ind

ηA/J

K1(π)

ηA

K1(ι)

ηJ

which follows from naturality of η, then implies the exactness of the corresponding
K0-K1-sequence.
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