Reflection positivity for extended topological field theories

Lukas Müller Perimeter Institute for Theoretical Physics

based on joint work with Luuk Stehouwer (arXiv:2301.06664) & Dagger Higher Categories workshop: Bruce Bartlett, Gio Ferrer, Brett Hungar, Theo Johnson-Freyd, Cameron Krulewski, Nivedita Nivedita, Dave Penneys, David Reutter, Claudia Scheimbauer, Luuk Stehouwer, Chetan Vuppulury

Functorial field theories as a model for quantum field theory?

Two pillars of quantum field theory:

- Locality: Objects only influence their immediate surroundings
 - Compatibility with cutting and gluing
 - \blacktriangleright \Rightarrow Extended functorial field theories.
- Unitarity: probabilities are positive and add up to 1
 - State spaces are Hilbert spaces
 - Orientation reversal corresponds to complex conjugation
 - ► ⇒ Unitary/ Reflection positive functorial field theories [Freed Hopkins '21, Kontsevich Segal '21,...]

Open Question

How to define reflection positive extended functorial field theories?

Goal for today

Study reflection positivity for once extended topological field theories.

Freed Hopkins '21:

- Definition for non-extended TQFTs in terms of hermitian structures and \mathbb{Z}_2 -equivariant functors for a large class of tangential structures.
- Definition and classification for fully extended invertible field theories.

Kreck, Stolz, Teichner:

- Definition for non-extended TQFTs in terms of *†*-functors.
- Classification for non-extended invertible field theories.

3 Reflection positivity for extended topological field theories

Symmetries and fermionic groups

Symmetries in physics:

- Fermionic systems always have a preferred symmetry $(-1)^F$.
- Distinction between *time preserving* and *time reversing* symmetries.

Definition

A fermionic group G is a \mathbb{Z}_2 -graded Lie group $G = G_0 \sqcup G_1$ together with an even central element $c \in G$ of square 1.

Example

Let V be a super vector space. The group

$$\operatorname{\mathsf{Aut}}^f(V)\coloneqq\operatorname{\mathsf{Aut}}(V)_0\sqcup\operatorname{\mathsf{Iso}}(\overline{V},V)_1$$

is a fermionic group with $c = (-1)^F$. (A representation of a fermionic group G on a super vector space is a fermionic group homomorphism $G \longrightarrow \operatorname{Aut}^{f}(V)$.)

Definition

For *G* a fermionic group we define the *spacetime structure group* $H_d := (Pin_d^+ \rtimes G/\{(-1,1) \simeq (1,c)\})_{ev}$ with group structure $(p \times g) \cdot (p' \times g') = c^{\theta(g)\theta(p')} \cdot (pp' \times gg').$

Example

•
$$G = * \Rightarrow H_d = SO_d$$

• $G = \mathbb{Z}_2^c \Rightarrow H_d = Spin_d, \ G = \mathbb{Z}_2^T \Rightarrow H_d = O_d,$
• $G = \mathbb{Z}_n \Rightarrow H_d = SO_d \times \mathbb{Z}_n$
• $G = Pin_1^+ \Rightarrow H_d = Pin_d^-, \ G = Pin_1^- \Rightarrow H_d = Pin_d^+$

$$BH_d \longrightarrow B\widehat{H}_d \longrightarrow B\mathbb{Z}_2$$

induces a map $B\mathbb{Z}_2 o \mathsf{Top}_{/BO_d}$. In addition $c \in H_d$ induces a homotopy

They combine into a $\mathbb{Z}_2 \times B\mathbb{Z}_2$ -action on BH_d as a space over BO_d . Using functionality of $Bord_d^{(-)}$: $Top_{/BO_d} \rightarrow Cat$.

Spin as an example

We consider $G = \mathbb{Z}_2^c$ as an example

$$1 o {\sf Spin}_d o {\sf Pin}_d^+ o \mathbb{Z}_2 o 1$$

•
$$(P \to M) \longmapsto \overline{P} \coloneqq \widehat{P} \setminus P$$
 with $\widehat{P} = P \times_{\text{Spin}_d} \text{Pin}_d^+$.

• $B\mathbb{Z}_2$ acts via the natural transformation with components

Reflection structures and spin statistics for topological field theories

 Z₂ × BZ₂ also acts on sVect by complex conjugation and (−1)^F: id ⇒ id with component

$$(-1)_V^F \colon V_0 \oplus V_1 \xrightarrow{\operatorname{id}_{V_0} \oplus -\operatorname{id}_{V_1}} V_0 \oplus V_1$$

Definition

Let *G* be a fermionic group with associated space time structure group H_d . A reflection and spin-statistics topological field theory with internal *G*-symmetry is a $\mathbb{Z}_2 \times B\mathbb{Z}_2$ -equivariant symmetric monoidal functor

$$\mathcal{Z} \colon \mathsf{Bord}_d^{H_d} \longrightarrow \mathsf{sVect}$$
 .

Reflection structures and spin statistics for topological field theories

• The equivariance data consists of natural isomorphisms $\mathcal{Z}(\overline{\Sigma}) \cong \overline{\mathcal{Z}(\Sigma)}$ and the condition that $\mathcal{Z}(c_{\Sigma}) = (-1)_{\mathcal{Z}(\Sigma)}^{F}$.

Proposition (LM L Stehouwer '23)

1-D reflection and spin-statistics topological field theory with internal G-symmetry are equivalent to hermitian representations of $\pi_0(G)$.

Proof.

$$\begin{aligned} \bullet [\mathsf{Bord}_1^{H_1}, \mathsf{sVect}]^{\mathbb{Z}_2 \times B\mathbb{Z}_2} &\cong ((\iota_0 \mathsf{sVect})^{H_1})^{\mathbb{Z}_2 \times B\mathbb{Z}_2} \cong (\iota_0 \mathsf{sVect})^{H_1 \rtimes (\mathbb{Z}_2 \times B\mathbb{Z}_2)} \\ \bullet H_1 \rtimes (\mathbb{Z}_2 \times B\mathbb{Z}_2) &\cong G_b \times O_1 \\ \bullet &\Longrightarrow [\mathsf{Bord}_1^{H_1}, \mathsf{sVect}]^{\mathbb{Z}_2 \times B\mathbb{Z}_2} = ((\iota_0 \mathsf{sVect})^{\mathbb{Z}_2})^{G_b} \cong (\iota_0 \mathsf{sHerm})^{G_b} \end{aligned}$$

Reflection positivity for topological field theories

Lemma

There are isomorphisms $h_{\Sigma} \colon \overline{\Sigma} \to \Sigma^{\vee}$ satisfying

$$(\overline{\Sigma} \xrightarrow{\sim} \overline{\Sigma^{\vee\vee}} \xrightarrow{\overline{h_{\Sigma}^{\vee}}} \overline{\overline{\Sigma^{\vee}}} \xrightarrow{\sim} \Sigma^{\vee}) = \overline{\Sigma} \xrightarrow{h_{\Sigma}} \Sigma$$

for all elements $\Sigma \in \text{Bord}_d^{H_d}$.

$$\Rightarrow \overline{\mathcal{Z}(\Sigma)} \cong \mathcal{Z}(\overline{\Sigma}) \xrightarrow{\mathcal{Z}(h_{\Sigma})} \mathcal{Z}(\Sigma^{\vee}) \cong \mathcal{Z}(\Sigma)^{\vee} \text{ defines a hermitian pairing on } \mathcal{Z}(\Sigma).$$

Definition (Freed Hopkins '21)

A reflection topological field theory \mathcal{Z} is *positive* if all the hermitian structures $\mathcal{Z}(h_{\Sigma})$ are positive, i.e. define a super Hilbert space.

Choosing h_{Σ} is evil!

Reformulation in terms of †-functors

• We can use the choices of h_{Σ} to make Bord^{H_d}_d into a dagger category

$$\begin{aligned} & \dagger \colon \mathsf{Bord}_d^{H_d} \longrightarrow (\mathsf{Bord}_d^{H_d})^{\mathsf{op}} \\ & M \colon \Sigma \to \Sigma' \longmapsto M \colon \Sigma' \xrightarrow{``h_{\Sigma'}''} \overline{\Sigma'} \lor \xrightarrow{\overline{M}^{\vee}} \overline{\Sigma}^{\vee} \xrightarrow{``h_{\Sigma''}} \Sigma \end{aligned}$$

- Similarly, sHilb is a dagger category.
- Reflection positivity ⇐⇒ Z induces a symmetric monoidal †-functor [L. Stehouwer J. Steinebrunner '23, Stehouwer]

Theorem (Stehouwer)

Every reflection positive field theory automatically satisfies spin-statistics.

Extended theories

- The functoriality of the extended bordism category $\text{Bord}_{d,0}^{H_d}$ in H_d implies that it also carries a $\mathbb{Z}_2 \times B\mathbb{Z}_2$ -action.
- Various higher categories build from sVect also carry a $\mathbb{Z}_2 \times B\mathbb{Z}_2$ -action:
 - ► The Morita category Alg₁(sVect) and higher iterations Alg₁(...Alg₁(Alg₁(sVect))...)
 - ► The *n*-fold suspensions nsVect = Σⁿ⁻¹sVect of Gaiotto and Johnson-Freyd.
 - Semi-simple super categories $sCat \cong sAlg^{f.d.}$.
 - ▶ The universal target of Johnson-Freyd and Reutter.

Definition

Let C be any of the targets listed above. A fully extended reflection and spin-statistics topological field theory with internal G-symmetry is a $\mathbb{Z}_2 \times B\mathbb{Z}_2$ -equivariant symmetric monoidal functor

$$\mathcal{Z} \colon \mathsf{Bord}_{d,0}^{H_d} \longrightarrow \mathcal{C}$$
 .

Reflection and spin-statistics topological field theories

2 Higher dagger categories

3 Reflection positivity for extended topological field theories

Definition

An anti-involutive $(\infty, 1)$ -category is a fixed point for the action $\mathcal{C} \mapsto \mathcal{C}^{op}$ on $Cat_{(\infty,1)}$.

Definition

A dagger structure on an $(\infty, 1)$ -category \mathcal{C} is a anti-involutive structure, together with a fully faithful ∞ -subgroupoid $\mathcal{C}_0 \hookrightarrow (\iota_0 \mathcal{C})^{\mathbb{Z}/2}$ such that the induced map $\mathcal{C}_0 \hookrightarrow (\iota_0 \mathcal{C})^{\mathbb{Z}/2} \to \mathcal{C}$ is essentially surjective.

Example

Bord^{H_d} with anti-involutive structure $(M \colon \Sigma \to \Sigma') \longmapsto (\overline{M}^{\vee} \colon \overline{\Sigma'}^{\vee} \to \overline{\Sigma}^{\vee})$ and \mathcal{C}_0 consisting of the full subcategory of $(\iota_0 \text{Bord}_d^{H_d})^{\mathbb{Z}_2}$ on the objects (Σ, h_{Σ}) .

Dagger (∞, n) -categories

Theorem (C. Barwick and C. Schommer-Pries '21)

The automorphism group of the ∞ -groupoid of (∞, n) -categories is \mathbb{Z}_2^n .

Definition

A fully anti-involutive (∞, n) -category is a fixed point for the \mathbb{Z}_2^n -action on $Cat_{(\infty,n)}$.

Definition

A dagger (∞, n) -category is a collection of (∞, n) -category

$$\mathcal{C}_0 \to \mathcal{C}_1 \to \dots \to \mathcal{C}_n$$

such that each C_k is a (fully-)anti-involutive (∞, k) -category, and the map $C_k \to C_{k+1}$ is a map of (fully-)anti-involutive $(\infty, k+1)$ -categories (where C_k is given the trivial (k+1)th anti-involution) which is essentially surjective on $(\leq k)$ -morphisms and induces a map $C_k \to (\iota_k C_{k+1})^{\mathbb{Z}/2}$ which is fully-faithful on (> k)-morphisms.

- Effectively C₀ picks out preferred fixed point structures for the Z₂ × Z₂ action on ι₀C induced from the fully anti-involutive bicategory C₂.
- C_1 picks out preferred \mathbb{Z}_2 -fixed point structures on 1-morphisms compatible with those on objects.
- We can build an equivalent bicategory C'_2 with $\dagger_1 \colon C'_2 \to {C'_2}^{1 \text{ op}}$ and $\dagger_2 \colon C'_2 \to {C'_2}^{2 \text{ op}}$ such that
 - ▶ \dagger_1 is the identity on objects and comes with an natural isomorphism $\dagger_1^2 \Rightarrow$ id whose components at every object are the identity.
 - ▶ $\frac{1}{2}$ is the identity on objects and 1-morphisms and $\frac{1}{2}$ = id.

- The categories showing up in the study of topological field theories are rigid, i.e. admit adjoints for all morphisms.
- There should be graphical calculus in terms of framed stratifications of \mathbb{R}^n for rigid *n*-categories.

Conjecture (T. Johnson-Freyd)

The automorphism group of $RigidCat_{(\infty,n)}$ is PL_n .

- A PL_n anti-involutive (∞, n) -category is a fixed point for the PL_n-action on RigidCat (∞, n) .
- A PL_n-dagger (∞, n) -category

$$\mathcal{C}_0 \to \mathcal{C}_1 \to \dots \to \mathcal{C}_n$$

consists of PL_k anti-involutive (∞, k) -categories C_k such that $C_i \rightarrow C_{i+j}$ is $PL_i \times PL_j$ -equivariant (+similar conditions as above).

Example

Let C be a fully dualizable symmetric monoidal (∞, n) -category. The stratified cobordism hypothesis describes defects in unoriented fully extended topological field theories in terms of

$$(\iota_0 \mathcal{C})^{O_n} \to (\iota_1 \mathcal{C})^{O_{n-1}} \to \cdots \to \mathcal{C}$$

This should be an O_n -dagger (∞, n) -category.

There is an $PL_2 = O_2 = S^1 \rtimes \mathbb{Z}_2 \simeq B\mathbb{Z} \rtimes \mathbb{Z}_2$ on RigidBiCat given by: • $\mathcal{B} \mapsto \mathcal{B}^{2 \text{ op}} \simeq \mathcal{B}^{1 \text{ op}}$

• $id_{RigidBiCat} \Longrightarrow id_{RigidBiCat}$ with component at \mathcal{B} :

$$(-)^{RR} \colon \mathcal{B} \longrightarrow \mathcal{B}, \quad b \longmapsto b$$
$$f \longmapsto f^{RR}, \varphi \longmapsto \varphi^{RR}$$

o · · ·

Remark

SO₂-dagger categories are the same as pivotal bicategories. This provides an explanation for their appearance in oriented topological field theories.

Reflection and spin-statistics topological field theories

2 Higher dagger categories

3 Reflection positivity for extended topological field theories

- We will now restrict to once extended topological field theories $\mathcal{Z} \colon \operatorname{Bord}_{d,d-2}^{H_d} \to \operatorname{sAlg}.$
- Symmetric monoidal higher dagger categories can be defined by requiring that all the C_i and functors in the definition are symmetric monoidal.

Observation (D. Reutter)

Let \mathcal{B} be a fully dualizable symmetric monoidal bicategory. It has a canonical (symmetric monoidal) O_2 -anti-involutive structure. All other (symmetric monoidal) O_2 -anti-involutive structures differ by an O_2 -action.

$$(-)^{ee}\colon \mathcal{B}\longrightarrow \mathcal{B}^{1\,\mathsf{op}},\ \mathcal{S}\colon \mathsf{id}_{\mathcal{B}}\Longrightarrow (-)^{\mathit{RR}},\ \dots$$

Restricting this O_2 -anti-involution to $\iota_0 \mathcal{B}$ recovers the O_2 -action featuring in the cobordism hypothesis.

O₂-dagger structure on sAlg^{f.d.}

- We consider the O₂-anti-involutive structure on sCat twisted by the action featuring in the definition of reflection and spin statistics field theories via the map O₂ → BZ₂ × Z₂.
- The \mathbb{Z}_2 part of the action is $\mathcal{C} \mapsto \overline{\mathcal{C}}^{\vee} \cong \overline{\mathcal{C}}^{op}$. $(F^{\vee} \cong (F^L)^{op})$
- The SO_2 -part is $S_{\mathcal{C}} \circ (-1)_{\mathcal{C}}^{\mathcal{F}}$ where

$$S_{\mathcal{C}} = N_{\mathcal{C}}^r = \int^{d \in \mathcal{C}} \mathcal{C}(c,d)^* \otimes d$$

- O₂-hermitian structures on C:
 - ▶ $h_C : \overline{C}^{op} \to C$ together with isomorphisms $h_C^2 \cong id_C$ and coherences.
 - ▶ 2-isomorphisms $\lambda: S_{\mathcal{C}} \circ (-1)^F \Longrightarrow id_{\mathcal{C}}. \Leftrightarrow \{tr_c: End(c) \to \mathbb{C}\}_{c \in \mathcal{C}}, i.e.$ a super Calabi-Yau structure.
 - Coherences...

We want to pick out some preferred O_2 -hermitian structures:

- Restrict $h_{\mathcal{C}}$ to be a 1-categorical dagger structure $\dagger_{\mathcal{C}}$.
- $\implies \langle f,g \rangle := \operatorname{tr}_c(f^{\dagger} \circ g)$ for $f,g \in \mathcal{C}(c,c')$ defines a non-degenerate pairing.
- We further restrict to those for which this pairing is positive.
- This is a super version of Baez's 2-Hilbert spaces.

Theorem

Baez super 2-Hilbert spaces s2Hilb form an O₂-dagger category.

- We consider the O₂-anti-involutive structure on Bord^{H₂}_{2,0} twisted by the action featuring in the definition of reflection and spin statistics field theories via the map O₂ → BZ₂ × Z₂.
- The \mathbb{Z}_2 part of the action is $P \longmapsto \overline{P}^{\vee}$.
- The SO_2 -part is $S_P \circ c_P$.
- We fix O_2 -hermitian structures on P:
 - $h_P : \overline{P}^{\vee} \to P$ as in the non-extended case.
 - ▶ There is a path $\gamma: 1 \rightarrow c$ in H_2 which is mapped to a generating loop in SO_2 .
 - $\blacktriangleright \implies (\bar{\mathsf{B}}\mathsf{ord}_{2,0}^{H_2} = (\mathsf{B}\mathsf{ord}_{2,0}^*)_{H_2}) \text{ There is a 2-isomorphism } S_P \circ c_P \to \mathsf{id}_P.$
 - Coherences…

• On 1-morphisms $\Sigma \colon P \to P'$ hermitian structures consist of 2-isomorphisms $h_{\Sigma} \colon (h_P \circ \overline{\Sigma}^{\vee} \circ h_{P'}^{-1})^R \to \Sigma$

Theorem

This defines a symmetric monoidal O_2 -dagger category structure on $\text{Bord}_{2,0}^{H_2}$.

Definition

A 2-dimensional fully extended reflection positive topological field theory with internal symmetry G is a symmetric monoidal O₂-dagger functor \mathcal{Z} : Bord^{H₂}_{2,0} \rightarrow s2Hilb.

Theorem

They are classified by unitary 2-representation of $\Pi_1(G)$.

A unitary 2-representation on a super 2-Hilbert space H consists of

- For even elements $g \in G_0$ unitary functors $ho(g) \colon H o H$
- For odd elements $g \in G_1$ unitary functors $ho(g) \colon \overline{H} o H$
- For every homotopy class of paths $\gamma \colon g \to g'$ a natural unitary isomorphism $\rho(\gamma) \colon \rho(g) \Longrightarrow \rho(g')$

- Classify anti-involutive symmetric monoidal functors $\mathsf{Bord}_{2,0}^{H_2}\to\mathsf{sCat}$ [LM L. Stehouwer '23]:
 - They are equivalent to $\mathbb{Z}_2 \times B\mathbb{Z}_2$ -equivariant functors.
 - Use the extension $1 \to H_2 \to H_2 \rtimes (\mathbb{Z}_2 \times B\mathbb{Z}_2) \to \mathbb{Z}_2 \times B\mathbb{Z}_2 \to 1$ and the isomorphism $H_2 \rtimes (\mathbb{Z}_2 \times B\mathbb{Z}_2) \cong G_b \times O_2$.
 - The O_2 -fixed points $\iota_0(sCat)^{O_2}$ are exactly the O_2 -hermitian structures.
 - The G_b -fixed points provide the action.
- Being an O_2 -dagger functor forces these to come from 2-super Hilbert spaces and unitary functors.

- Is there an extended spin statistics theorem (\mathbb{Z}_2 -dagger implies O₂-dagger)?
- Comparison with the classification of Freed-Hopkins in the invertible case. (work in progress with L. Stehouwer)
- Fully extended reflection positivity:
 - ▶ What is a good target?
 - ▶ Is Bord^{H_d} a PL_n or O_n dagger category?

- Is there an extended spin statistics theorem (\mathbb{Z}_2 -dagger implies O₂-dagger)?
- Comparison with the classification of Freed-Hopkins in the invertible case. (work in progress with L. Stehouwer)
- Fully extended reflection positivity:
 - ▶ What is a good target?
 - ▶ Is Bord^{H_d} a PL_n or O_n dagger category?

Thank you for your attention!