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Part I: Coarse Geometry
0. (8.4.2025) Crash Course on C∗-Algebras and K-Theory. — (If needed)
Introduction to the basic concepts of the theory of C∗-algebras and their K-theory, as
well as the exact six-term sequence.

1. (22.4.) Coarse Spaces — Introduction of the concepts of (proper) coarse structure,
coarse map, coarse equivalence [13, §2.1], [2, §6.1], [12, §2]. Possibly a comparison with
concepts from metric geometry [13, §1.3]. As an example, maybe a discussion of the
Milnor-Švarc theorem (Thm. 1.18 in [13]).

2. (29.4.) Roe Algebras — Definition of the Roe algebra of a metric space [12, §3],
[2, §6], [1, §2]. Discussion of “functoriality” under coarse maps and independence from
the choice of the X-module [2, Lemma 6.3.11 & Prop. 6.3.12], [1, Thm. 2.1]. Discussion
of the theorem stating that the K-theory of the Roe algebra vanishes on flasque spaces
[12, Def. 9.3 & Prop. 9.4], [2, Lemma 6.4.2], [3, Prop. 1], [1, Prop. 3.9].

3. (6.5.) The Coarse Mayer-Vietoris Sequence — Discussion of big families and
localized Roe algebras [4, III.5 & III.6]. Subsequently, introduction of the Mayer-Vietoris
sequence for coarse K-theory [12, §9], [3, §5], [1, §3.4]. In the literature, this is done for
“coarsely excisive partitions” [12, Def. 9.1]. A more practical approach is to formulate the
result for big families instead (i.e., replace subsets with the generated big family), thus
avoiding additional conditions and obtaining the MV-sequence in the form given in [4,
§V]. Computation of the K-theory groups Ki(C

∗(Rd)) ∼= Ki(C
∗(Zd)) through repeated

applications of the Mayer-Vietoris sequence and the flasqueness of half-spaces [1, §3.8].

4.* (13.5.) Comparison with the Group C∗-Algebra — Definition of the (reduced)
group C∗-algebra C∗

r (Γ) of a discrete group Γ. For Γ = Zd, discussion of the isomorphism
C∗

r (Zd) ∼= C(T) and computation of the K-theory. Definition of the map C∗
r (Zd)⊗K →
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C∗(Rd) and computation of the induced map in K-theory [1, §4] (here, it suffices to restrict
to the real case).

Part II: Topological Phases
5. (20.5.) Lattice Systems and Chern Insulators — Discussion of translation-
invariant Hamiltonians on lattice systems and their classification over the Brillouin zone
via Berry curvature. Connection to the mathematical theory of vector bundles and char-
acteristic classes. Explicit description of a Chern insulator [4, Ex. IV.1].

6. (27.5.) Noncommutative Approach — Description of a topological insulator
using C∗-algebras [4, §I]. Relation to the translation-invariant setting using material from
Lecture 4. Discussion of examples, in particular the Landau Hamiltonian HA = (d −
iA)∗(d− iA) in R2, including the statement that this yields a nontrivial class [5], see also
Ex. 5.3 in [6] and the references therein.

7. (27.5.) Gap-Filling — If a Hamiltonian with a spectral gap describes a topo-
logical insulator, then the spectral gap disappears after restriction to a bounded region.
Discussion of this gap-filling principle following [4, §VI], see also [5, Thm. 2], [6, Thm. 3.4].

8. (3.6.) Edge-Traveling — For two-dimensional topological insulators, a boundary
current can be observed after introducing an edge. Description of this edge-traveling phe-
nomenon following [4, §VII] (see also [6, §6], though this description is more complicated).
For experimental observations, see the videos related to the article [10].

9. (10.6.) Localized Wannier Bases — Discussion and proof of the statement
that the spectral subspace defined by nontrivial topological insulators does not admit an
orthonormal basis of localized functions [7].

10. (17.6.) Coarse Cohomology — Introduction of coarse cohomology [11, §2.2],
see also §4.2 in [14] (considering only the non-equivariant case). Discussion of the Mayer-
Vietoris sequence for coarse cohomology and its computation in the case of Rn. Possibly
also a discussion of the character map HX•(M) → H•

c (M) [11, 2.11]. Proof that for a
coarsely transverse partition A0, . . . , Aq (see Def. 2.5 in [8]), the function

ϕ(x0, . . . , xn) :=
󰁛

σ∈Sn+1

sgn(σ)χA0(xσ0) · · ·χAq(xσq)

defines a coarse cohomology class on M in degree n, where χAi
is the indicator function

of Ai.
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11.* (24.6.) “Measurement” via Coarse Cohomology — By choosing cohomology
classes appropriately, one can “measure” the nontriviality of insulators (i.e., determine
whether they are topological). This is treated in dimension 2 in [8]. The pairing of a
finite propagation projection with a partition is defined in §2.3, and the quantization
argument is discussed in §2.1 and §2.5. For simplicity, it is advisable to restrict to finite
propagation projections here. Possibly a discussion of relation to physics (§5.4). For
physical applications, see the videos related to [9].

References
[1] E. E. Ewert and R. Meyer. Coarse geometry and topological phases. Comm. Math.

Phys., 366(3):1069–1098, 2019.

[2] N. Higson and J. Roe. Analytic K-homology. Oxford Mathematical Monographs.
Oxford University Press, Oxford, 2000. Oxford Science Publications.

[3] N. Higson, J. Roe, and G. Yu. A coarse Mayer-Vietoris principle. Math. Proc.
Cambridge Philos. Soc., 114(1):85–97, 1993.

[4] M. Ludewig. Coarse geometry and its applications in solid state physics. In R. Szabo
and M. Bojowald, editors, Encyclopedia of Mathematical Physics (Second Edition),
pages 78–88. Academic Press, Oxford, second edition edition, 2025.

[5] M. Ludewig and G. C. Thiang. Gaplessness of Landau Hamiltonians on hyperbolic
half-planes via coarse geometry. Comm. Math. Phys., 386(1):87–106, 2021.

[6] M. Ludewig and G. C. Thiang. Cobordism invariance of topological edge-following
states. Adv. Theor. Math. Phys., 26(3):673–710, 2022.

[7] M. Ludewig and G. C. Thiang. Large-scale geometry obstructs localization. J. Math.
Phys., 63(9):Paper No. 091902, 8, 2022.

[8] M. Ludewig and G. C. Thiang. Quantization of conductance and the coarse coho-
mology of partitions, 2023. https://arxiv.org/abs/2308.02819.

[9] N. P. Mitchell, L. M. Nash, D. Hexner, and et al. Amorphous topological insulators
constructed from random point sets. Nature Physics, 14:380–385, 2018.

[10] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, and W. T. M. Irvine.
Topological mechanics of gyroscopic metamaterials. Proceedings of the National
Academy of Sciences, 112(47):14495–14500, 2015. https://www.pnas.org/doi/10.
1073/pnas.1507413112.

[11] J. Roe. Coarse cohomology and index theory on complete Riemannian manifolds.
Mem. Amer. Math. Soc., 104(497):x+90, 1993.

3

https://arxiv.org/abs/2308.02819
https://www.pnas.org/doi/10.1073/pnas.1507413112


[12] J. Roe. Index theory, coarse geometry, and topology of manifolds, volume 90 of CBMS
Regional Conference Series in Mathematics. Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society, Providence, RI,
1996.

[13] J. Roe. Lectures on coarse geometry, volume 31 of University Lecture Series. Amer-
ican Mathematical Society, Providence, RI, 2003.

[14] C. Wulff. Equivariant coarse (co-)homology theories. SIGMA Symmetry Integrability
Geom. Methods Appl., 18:Paper No. 057, 62, 2022.

4


