Seminar “Coarse geometry and topological Phases”

Matthias Ludewig

Sommersemester 2025

Part I: Coarse Geometry

0. (8.4.2025) Crash Course on C*-Algebras and K-Theory. — (If needed)
Introduction to the basic concepts of the theory of C*-algebras and their K-theory, as
well as the exact six-term sequence.

1. (22.4.) Coarse Spaces — Introduction of the concepts of (proper) coarse structure,
coarse map, coarse equivalence |13, §2.1], [2, §6.1], [12, §2|. Possibly a comparison with
concepts from metric geometry [13, §1.3]. As an example, maybe a discussion of the
Milnor-Svarc theorem (Thm. 1.18 in [13]).

2. (29.4.) Roe Algebras — Definition of the Roe algebra of a metric space [12, §3],
[2, §6], [1, §2]. Discussion of “functoriality” under coarse maps and independence from
the choice of the X-module |2, Lemma 6.3.11 & Prop. 6.3.12], [1, Thm. 2.1]. Discussion
of the theorem stating that the K-theory of the Roe algebra vanishes on flasque spaces
[12, Def. 9.3 & Prop. 9.4], |2, Lemma 6.4.2|, |3, Prop. 1], [1, Prop. 3.9].

3. (6.5.) The Coarse Mayer-Vietoris Sequence — Discussion of big families and
localized Roe algebras |4, 111.5 & 111.6]. Subsequently, introduction of the Mayer- Vietoris
sequence for coarse K-theory [12, §9], [3, §5], [1, §3.4]. In the literature, this is done for
“coarsely excisive partitions” [12, Def. 9.1]. A more practical approach is to formulate the
result for big families instead (i.e., replace subsets with the generated big family), thus
avoiding additional conditions and obtaining the MV-sequence in the form given in [4,
§V]. Computation of the K-theory groups K;(C*(R?)) = K;(C*(Z%)) through repeated
applications of the Mayer-Vietoris sequence and the flasqueness of half-spaces [1, §3.8].

4.*% (13.5.) Comparison with the Group C*-Algebra — Definition of the (reduced)
group C*-algebra C*(T') of a discrete group I'. For I' = Z%, discussion of the isomorphism
C*(Z%) = C(T) and computation of the K-theory. Definition of the map C*(Z%) @ K —



C*(R?%) and computation of the induced map in K-theory [1, §4] (here, it suffices to restrict
to the real case).

Part II: Topological Phases

5. (20.5.) Lattice Systems and Chern Insulators — Discussion of translation-
invariant Hamiltonians on lattice systems and their classification over the Brillouin zone
via Berry curvature. Connection to the mathematical theory of vector bundles and char-
acteristic classes. Explicit description of a Chern insulator [4, Ex. IV.1].

6. (27.5.) Noncommutative Approach — Description of a topological insulator
using C*-algebras [4, §I]. Relation to the translation-invariant setting using material from
Lecture 4. Discussion of examples, in particular the Landau Hamiltonian Hy = (d —
iA)*(d —iA) in R?, including the statement that this yields a nontrivial class [5], see also
Ex. 5.3 in [6] and the references therein.

7. (27.5.) Gap-Filling — If a Hamiltonian with a spectral gap describes a topo-
logical insulator, then the spectral gap disappears after restriction to a bounded region.
Discussion of this gap-filling principle following [4, §VI], see also [5, Thm. 2|, [6, Thm. 3.4].

8. (3.6.) Edge-Traveling — For two-dimensional topological insulators, a boundary
current can be observed after introducing an edge. Description of this edge-traveling phe-
nomenon following [4, §VII| (see also [6, §6], though this description is more complicated).
For experimental observations, see the videos related to the article [10].

9. (10.6.) Localized Wannier Bases — Discussion and proof of the statement
that the spectral subspace defined by nontrivial topological insulators does not admit an
orthonormal basis of localized functions [7].

10. (17.6.) Coarse Cohomology — Introduction of coarse cohomology [11, §2.2],
see also §4.2 in [14] (considering only the non-equivariant case). Discussion of the Mayer-
Vietoris sequence for coarse cohomology and its computation in the case of R™. Possibly
also a discussion of the character map HX*(M) — H? (M) |11, 2.11]. Proof that for a
coarsely transverse partition Ay, ..., A, (see Def. 2.5 in [8]), the function

o(Toy ...y Tp) 1= Z sgn(0) X4, (Toy) - X4, (To,)
UESn+1

defines a coarse cohomology class on M in degree n, where x4, is the indicator function
of Az



11.* (24.6.) “Measurement” via Coarse Cohomology — By choosing cohomology
classes appropriately, one can “measure” the nontriviality of insulators (i.e., determine
whether they are topological). This is treated in dimension 2 in [8]. The pairing of a
finite propagation projection with a partition is defined in §2.3, and the quantization
argument is discussed in §2.1 and §2.5. For simplicity, it is advisable to restrict to finite
propagation projections here. Possibly a discussion of relation to physics (§5.4). For
physical applications, see the videos related to [9].
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